Geração de aproximações de diferenças finitas em malhas não-uniformes para as EDPs de Laplace e Helmholtz

Autores

  • Juliano Santos
  • Abimael Loula
  • Geraldo dos Santos

DOI:

https://doi.org/10.5540/03.2017.005.01.0339

Palavras-chave:

Diferenças Finitas, Malhas não-estruturadas, Laplace, Helmholtz.

Resumo

Um método de diferenças finitas é aplicado aos problemas de Laplace e Helmholtz
em malhas uniforme e não uniforme. Neste trabalho propomos para os problemas de Laplace e Helmholtz aproximações por diferenças finitas via bases polinomiais harmônicas e de Bessel, respectivamente, as quais são comparadas com as aproximações clássicas via polinômios canônicos. Os resultados são ilustrados pelas taxas de convergência obtidas.

Downloads

Não há dados estatísticos.

Downloads

Publicado

2017-04-14

Edição

Seção

Trabalhos Completos - Métodos Numéricos e Aplicações