Interval Newton’s method using constrained interval arithmetic
DOI:
https://doi.org/10.5540/03.2025.011.01.0414Palavras-chave:
Constrained Interval Arithmetic, Interval Taylor’s Theorem, Interval Newton’s MethodResumo
This article presents the Newton’s method for interval-valued functions, for this, is introduced a derivative concept to use the Taylor’s theorem for interval-valued functions. The arithmetic structure associated with these results is the constrained interval arithmetic.
Downloads
Referências
A.K. Bhurjee, G. Panda, “Efficient solution of interval optimization problem”, In: Math. Meth. Res. 76, 273–288, 2012.
J. R. Campos, E. Assunção, G. N. Silva, W. A. Lodwick, and M. C. M. Teixeira, “Discrete-time interval optimal control problem”, In: International Journal of Control, pp. 1-7, Dec. 2017. DOI:10.1080/00207179.2017.1410575
J. R. Campos, E. Assunção, G. N. Silva, W. A. Lodwick, C. M. Teixeira, U. A. S. Leal, “Constrained interval arithmetic to solve the discrete-time interval optimal control problem”, In: Recent Trends on Fuzzy Systems da Sociedade Brasileira de Matemática Aplicada e Computacional, 2018.
Y. Chalco-Cano, W.A. Lodwick, A. Rufián-Lizana, “Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative”, In: Fuzzy Optimization and decision Making 12, 305–322, 2013.
Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, M.D. Jiménez-Gamero, “Calculus for interval-valued functions using generalized Hukuhara derivative and applications”, In: Fuzzy Sets and Systems 219, 49D-67, 2013.
W.A. Lodwick, “Constrained Interval Arithmetic”, CCM Report, (http://www-math.cudenver.edu/ccm/reports/index.shtml), 1999.
G. G. Maqui-Huaman, G. Silva, and U. Leal, “Necessary Optimality Conditions for Interval Optimization Problems with Inequality Constraints Using Constrained Interval Arithmetic”, In: Fuzzy Information Processing, pp. 439-449, 2018. DOI:10.1007/978-3-319-95312-0 38
R. E. Moore: Interval Analysis. Prince-Hall, Englewood Cliffs, NJ, 1966.