Optimizing Multi- and Many-Objective Problems on Varied Budgets
hybridizing NSGA-III with Local Searches
DOI:
https://doi.org/10.5540/03.2025.011.01.0454Palavras-chave:
Many-Objective Problems, NSGA-III, Local SearchResumo
This study addresses the challenges faced by Multi- and Many-Objective Evolutionary Algorithms in converging to the optimal Pareto Front under limited budgets. It proposes integrating these algorithms with deterministic single-objective local search techniques tailored for scalarized multi-objective optimization problems to accelerate convergence. Two integrations of NSGA-III with local search techniques based on SQP and BFGS algorithms are proposed and evaluated through numerical experiments on DTLZ1-4 problems across various budget scenarios. Performance profiles constructed using IGD+ and epsilon-indicator performance indicators demonstrate that the hybrid algorithms outperform NSGA-III. Statistical analysis confirms the superiority of the hybrid approaches, making them more efficient and reliable for the addressed problems.
Downloads
Referências
S. B. Aceves, S. I. Valdez, and A. H. Aguirre. “A Broyden-based algorithm for multi-objective local-search optimization”. In: Information Sciences 594 (2022), pp. 264–285. issn: 0020-0255.
H. J. C. Barbosa, H. S. Bernardino, and A. M. S. Barreto. “Using Performance Profiles to Analyze the Results of the 2006 CEC Constrained Optimization Competition”. In: 2010 IEEE World Congress on Computational Intelligence - WCCI. 2010, pp. 1–8.
P. T. Boggs and T. J. W. Tolle. “Sequential quadratic programming”. In: Acta numerica 4 (1995), pp. 1–51.
K. Deb and H. Jain. “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints”. In: IEEE Transactions on Evolutionary Computation 18.4 (2014), pp. 577–601.
E. D. Dolan and J. More. “Benchmarking optimization software with performance profiles”. In: Mathematical Programming 91 (2002), pp. 201–213.
R. Gower, F. Hanzely, P. Richtárik, and S. U. Stich. “Accelerated stochastic matrix inversion: general theory and speeding up BFGS rules for faster second-order optimization”. In: Advances in Neural Information Processing Systems 31 (2018), pp. 1–11.
J. L. Guerrero, L. Martí, J. García, A. Berlanga, and J. M. Molina. “Introducing a Robust and Efficient Stopping Criterion for MOEAs”. In: 2010 IEEE Conference on Evolutionary Computation (CEC), part of 2010 IEEE World Congress on Computational Intelligence (WCCI 2010). Barcelona, Spain: IEEE Press, 2010.
H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. “Modified Distance Calculation in Generational Distance and Inverted Generational Distance”. In: In: Gaspar-Cunha A., Henggeler Antunes C., Coello C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science, vol 9019. Springer, Cham., 2015, pp. 110–125.
F. Li, L. Gao, and W. Shen. “Surrogate-Assisted Multi-Objective Evolutionary Optimization With Pareto Front Model-Based Local Search Method”. In: IEEE Transactions on Cybernetics 54.1 (2024), pp. 173–186.
K. Miettinen. Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science. Springer US, 1999. isbn: 9780792382782.
R. Morrison and D. J. KennethA. “Measurement of Population Diversity”. English. In: Artificial Evolution. Ed. by Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, and Marc Schoenauer. Vol. 2310. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 31–41. isbn: 978-3-540-43544-0.
K. Sindhya, A. Sinha, K. Deb, and K. Miettinen. “Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems”. In: 2009 IEEE Congress on Evolutionary Computation. 2009, pp. 2919–2926. doi: 10.1109/CEC.2009.4983310.
Y. Tian, R. Cheng, X. Zhang, and Y. Jin. “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]”. In: IEEE Computational Intelligence Magazine 12.4 (2017), pp. 73–87.
L. Uribe, A. Lara, K. Deb, and O. Schütze. “A new gradient free local search mechanism for constrained multi-objective optimization problems”. In: Swarm and Evolutionary Computation 67 (2021), p. 100938. issn: 2210-6502.
A. P. Wierzbicki. “A mathematical basis for satisficing decision making”. In: Mathematical Modelling 3.5 (Jan. 1982), pp. 391–405. issn: 02700255. doi: 10.1016/0270-0255(82)90038-0.
E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. “Performance assessment of multiobjective optimizers: an analysis and review”. In: IEEE Transactions on Evolutionary Computation 7.2 (2003), pp. 117–132. doi: 10.1109/TEVC.2003.810758.