Moving Least Square Interpolation in Matrix-Based Finite Difference Schemes on Adaptive Cartesian Grids

Autores/as

  • Catalina M. Rúa-Alvarez Universidad de Nariño
  • Claudia P. Ordóñez UPRM
  • Priscila C. Calegari UFSC

DOI:

https://doi.org/10.5540/03.2026.012.01.0316

Palabras clave:

Adaptive Mesh Refinement, Cartesian grid, Finite Difference Method, Moving Least Square

Resumen

A variety of applications related to engineering and physics can be mathematically modeled by Partial Differential Equations, such as Poisson’s equation with Dirichlet or Neumann boundary conditions. This study focuses on the application of Moving Least Squares (MLS) interpolation within matrix-based Finite Difference schemes to approximate the two-dimensional Poisson’s equation on adaptive Cartesian grids or Adaptive Mesh Refinement in specific regions using Matlab. Communication between cells at different refinement levels is typically done using Lagrange interpolation methods; however, this paper investigates and discusses the benefits of MLS interpolation on the proposed approach.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Berger and P. Colella. “Local adaptive mesh refinement for shock hydrodynamics”. In: Journal of computational Physics 82.1 (1989), pp. 64–84.

P. Calegari and A. Franco. “Geração de malhas com refinamento adaptativo uando tabelas de dispersão”. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. 2021, pp. 1–7. doi: 10.5540/03.2021.008.01.0421.

A. Coco, S. Ekström, G. Russo, S. Serra-Capizzano, and S. C. Stissi. “Spectral and norm estimates for matrix-sequences arising from a finite difference approximation of elliptic operators”. In: Linear Algebra and its Applications 667 (2023), pp. 10–43. issn: 0024-3795.

R. Egan, A. Guittet, R. Temprano-Coleto, T. Isaac, F. J. Peaudecer, J. R. Landel, P. Luzzatto-Fegiz, C. Burstedde, and F. Gibou. “Direct numerical simulation of incompressible flows on parallel Octree grids”. In: Journal of Computational physics 428 (2020), pp. 3–29. doi: 10.1016/j.jcp.2020.110084.

M. F. Mokbel and W. G. Aref. “Irregularity in multi-dimensional space-filling curves with applications in multimedia databases”. In: Proceedings of the tenth international conference on Information and knowledge management. 2001, pp. 512–519.

C. P. Ordoñez. “Creación y validación de estructuras de datos para aproximar EDP con diferencias finitas en mallas adaptativas”. Master dissertation. UPRM, 2024.

C. M. Rúa-Alvarez. “Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos”. PhD thesis. IME/USP, 2013.

F. Sousa, C. Lages, J. Ansoni, A. Castelo, and A. Simao. “A finite difference method with meshless interpolation for incompressible flows in non-graded tree-based grids”. In: Journal of Computational physics 396 (2019), pp. 848–866. doi: 10.1016/j.jcp.2019.07.011.

W. Y. Tey, N. A. Che S., Y. Asako, M. W. Muhieldeen, and O. Afshar. “Moving Least Squares Method and its Improvement: A Concise Review”. In: Journal of Applied and Computational Mechanics 7.2 (2021), pp. 883–889. issn: 2383-4536.

D. Wanta, W.T. Smolik, J. Kryszyn, P. Wróblewski, and M. Midur. “A Finite Volume Method using a Quadtree Non-Uniform Structured Mesh for Modeling in Electrical Capacitance Tomography”. In: Proc. Natl. Acad. Sci., India, Sect. A Phys 92 (2022), pp. 443–452.

Descargas

Publicado

2026-02-13

Número

Sección

Trabalhos Completos