Mixed Virtual Element-Based Numerical Schemes for Nonlinear Problems in Porous Media Flow
DOI:
https://doi.org/10.5540/03.2026.012.01.0307Palabras clave:
Virtual Elements, Post-processing, Flow in Porous MediumResumen
In this talk, we present mixed virtual element-based formulations for some nonlinear problems in porous media flow. The aim of this work is to demonstrate the capacity of these numerical schemes to approximate the variables of interest adequately. In particular, we examine the Brinkman and Navier-Stokes-Brinkman flows. The systems are formulated in terms of a pseudostress tensor and the use of Lagrange multipliers. The well-posedness of the associated augmented formulation, along with a priori error bounds for the discrete scheme, has both been established. Finally, we provide some numerical results that confirm the theoretical results.
Descargas
Citas
B. Ahmad, A. Alsaedi, F. Brezzi, L.D Marini, and A. Russo. “Equivalent projectors for virtual element methods”. In: Comput. Math. Appl. 66.3 (2013), pp. 376–391.
F. Brezzi, R. S. Falk, and L.D. Marini. “Basic principles of mixed virtual element methods”. In: ESAIM Math. Model. Numer. Anal. 48.4 (2014), pp. 1227–1240.
G. N. Gatica, M. Munar, and F. A. Sequeira. “A mixed virtual element method for a nonlinear Brinkman model of porous media flow”. In: Calcolo 55.21 (2018).
G. N. Gatica, M. Munar, and F. A. Sequeira. “A Mixed Virtual Element Method for the Boussinesq Problem on Polygonal meshes”. In: Journal of Computational Mathematics 39.3 (2021), pp. 392–427. doi: https://doi.org/10.4208/jcm.2001-m2019-0187.
G. N. Gatica, M. Munar, and F. A. Sequeira. “A mixed virtual element method for the Navier–Stokes equations”. In: Mathematical Models and Methods in Applied Sciences 28.14 (2018), pp. 2719–2762. doi: https://doi.org/10.1142/S0218202518500598.
L. F. Gatica, R. Oyarzúa, and N. Sánchez. “A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier-Stokes-Brinkman problem”. In: Comput. Math. Appl. 75.7 (2018), pp. 2420–2444. doi: https://doi.org/10.1016/j.camwa.2017.12.029.
M. Munar, A. Cangiani, and I. Velásquez. “Residual-based a posteriori error estimation for mixed virtual element methods”. In: Computers Mathematics with Applications 166 (2024), pp. 182–197.