Functional Error Estimates for Mimetic Difference Approximations to the Poisson Problem

Autores/as

  • Jhabriel Varela Polytechnic School - UNA. Polytechnic University Taiwan-Paraguay
  • Miguel Dumett Computational Science Research Center. San Diego State University

DOI:

https://doi.org/10.5540/03.2026.012.01.0291

Palabras clave:

Functional a Posteriori Error Estimates, Mimetic Differences, Interpolation Operators

Resumen

Functional a posteriori error estimates provide guaranteed upper bounds on the deviation between the exact solution and any approximation in the appropriate functional space, making them agnostic to the discretization method used to obtain the approximation. However, numerical solutions often do not belong to the correct functional space, requiring postprocessing techniques to ensure compatibility with the error estimation framework. In this article, we consider the Poisson equation as a model problem and demonstrate how to postprocess solutions obtained using mimetic differences of the Corbino-Castillo type to enable the application of functional error estimates. Numerical experiments in two dimensions confirm that the proposed postprocessing techniques yield fully computable error estimates that recover ideal convergence rates in the energy norm.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications. Vol. 44. Springer, 2013.

S. Cochez-Dhondt, S. Nicaise, and S. Repin. “A posteriori error estimates for finite volume approximations”. In: Mathematical Modelling of Natural Phenomena 4.1 (2009), pp. 106–122.

J. Corbino and J. E. Castillo. “High-order mimetic finite-difference operators satisfying the extended Gauss divergence theorem”. In: Journal of Computational and Applied Mathematics 364 (2020), p. 112326.

J. Corbino, M. A. Dumett, and J. E. Castillo. “MOLE: Mimetic Operators Library Enhanced”. In: Journal of Open Source Software 9.99 (2024), p. 6288.

M. A. Dumett. High-Order interpolants for derivatives of smooth functions restricted to hexahedral nodes. Tech. rep. CSRCR2024-09. Computational Science Research Center, San Diego State University, Dec. 2024.

S. Repin. A posteriori estimates for partial differential equations. de Gruyter, 2008.

J. Varela and M. A. Dumett. Postprocessing of Corbino-Castillo mimetic difference solutions for error estimation. Tech. rep. CSRCR2025-03. Computational Science Research Center, San Diego State University, May 2025.

M. Vohralík. A posteriori numerical analysis based on the method of equilibrated fluxes. Lecture Notes of Course NMNV464, Faculty of Mathematics and Physics, Charles University, Prague. 2024.

Descargas

Publicado

2026-02-13

Número

Sección

Trabalhos Completos