Entropia de Permutação no Contexto do Cálculo de Complexidade do Mapa Logístico

Autores/as

  • Rebeca R. H. Pinafo
  • Patrícia R. Cirilo
  • Karen Paulino
  • João V. Rangel
  • Elbert E. N. Macau

Resumen

Neste trabalho temos o objetivo de estudar sob a perspectiva de medidas de complexidade o mapa logístico (1): xn+1 = rxn (1 − rxn ) (1) [...]

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rebeca R. H. Pinafo

ICT-UNIFESP, São José dos Campos, SP

Patrícia R. Cirilo

ICT-UNIFESP, São José dos Campos, SP

Karen Paulino

ICT-UNIFESP, São José dos Campos, SP

João V. Rangel

ICT-UNIFESP, São José dos Campos, SP

Elbert E. N. Macau

ICT-UNIFESP, São José dos Campos, SP,

Citas

May R. M. “Simple mathematical models with very complicated dynamics”. Em: Nature 261 (1976), pp. 459–67. doi: 10.1038/261459a0.

M.W. Hirsch, S. Smale e R.L. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Science, 2013. isbn: 9780123820105. url: https://books.google.co.ao/books?id=csYhsrOEh%5C_MC.

R. López-Ruiz, H.L. Mancini e X. Calbet. “A statistical measure of complexity”. Em: Physics Letters A 209.5 (1995), pp. 321–326. issn: 0375-9601. doi: https://doi.org/10.1016/0375-9601(95)00867-5. url: https://www.sciencedirect.com/science/article/pii/0375960195008675.

P Feldman David e P Crutchfield James. “Measures of statistical complexity: Why?” Em: Physics Letters A 238.4 (1998), pp. 244–252. issn: 0375-9601. doi: https://doi.org/10.1016/S0375-9601(97 )00855-4. url: https://www.sciencedirect.com/science/article/pii/S0375960197008554.

José Roberto Castilho Piqueira. “A mathematical view of biological complexity”. Em: Communications in Nonlinear Science and Numerical Simulation 14.6 (2009), pp. 2581–2586.

JRC Piqueira, SHVL De Mattos e J Vasconcelos-Neto. “Measuring complexity in three-trophic level systems”. Em: Ecological Modelling 220.3 (2009), pp. 266–271.

José Roberto C Piqueira e Sérgio Henrique VL de Mattos. “Note on LMC complexity measure”. Em: Ecological Modelling 222.19 (2011), pp. 3603–3604.

Christoph Bandt. “Small Order Patterns in Big Time Series: A Practical Guide”. Em: Entropy 21.6 (2019). issn: 1099-4300. doi: 10.3390/e21060613. url: https://www.mdpi.com/1099-4300/21/6/613.

Michel Baranger. “Chaos, complexity, and entropy”. Em: New England Complex Systems Institute, Cambridge 17 (2000).

Publicado

2023-12-18

Número

Sección

Resumos