Filtro de Kalman para Sistemas Dinâmicos Singulares
Resumen
A análise e projeto de sistemas singulares tem recebido grande atenção na literatura. Uma das motivações ocorre devido à formulação que aparece, frequentemente, em vários sistemas como, por exemplo, na modelagem de sistemas agronômicos, econômicos e robóticos ([1],[2]). Quando os valores dos estados de um sistema dinâmico com comportamento aleatório são desconhecidos, a estimativas a priori e a posteriori destes estados são usualmente obtidas através do filtro de Kalman [3]. Para sistemas singulares discretos no tempo, tem havido um estudo intenso sobre filtros de Kalman, com aplicações em sistemas regulares onde o filtro usual não pode ser utilizado. Um exemplo seria quando existem entradas desconhecidas no sistema regular, nesse caso diferentes formulações têm sido propostas para a resolução do problema de estimativa recursiva [4]. Em um contexto puramente singular, pode-se considerar o método dos mínimos quadrados, o critério da máxima verossimilhança, a estimativa da mínima variância e modelos de inovação tipo ARMA. Para o espaço de estados usual, a inclusão de incertezas limitadas nos parâmetros do sistema tem levado a várias generalizações do filtro de Kalman [5]. No caso singular, as incertezas são consideradas nas covariâncias dos ruídos ([6]). [...]
Descargas
Citas
L. E. Esteves. “Um modelo dinâmico considerando uma estratégia de desenvolvimento de catching-up tecnológico”. Em: Revista de Economia 74 (2020), pp. 85–111.
D. C. Soares, E. M. Bonfim-Silva, T. J. A. da Silva, E. C. A. Anicésio, T. F. Duarte e J. R. Oliveira. “Growth and production of wheat cultivars under water tensions in Cerrado soil”. Em: Revista Brasileira de Engenharia Agrícola e Ambiental 27 (2023), pp. 279–286. doi: 10.1590/1807-1929.
C.E. de Souza, K.A Barbosa e M. Fu. “Robust filtering for uncertain linear discrete-time descriptor systems”. Em: Automatica 44 (2008), pp. 792–798.
J.R. Chavez-Fuentes, E.F. Costa, M.H. Terra e K.D.T. Rocha. “The linear quadratic optimal control problem for discrete-time Markov jump linear singular systems”. Em: Automatica 127 (2021), pp. 1–8. doi: 10.1016/j.automatica.2021.109506.
A.H. Sayed. “A framework for state-space estimation with uncertain models”. Em: IEEE Transactions on Automatic Control 46 (2001), pp. 998–1013.
S. Sun, J. Ma e N. Lv. “Optimal and self-tuning fusion Kalman filters for discrete-time stochastic singular systems”. Em: International Journal of Adaptative Control and Signal Processing 22 (2008), pp. 932–948.