Deterministic Graph Spectral Sparsification

Autores/as

  • Fabricio A. Mendoza Granada
  • Sergio Mercado
  • Marcos Villagra

Resumen

An important technique in data analysis is principal component analysis or PCA. Given a covariance matrix S, in PCA we need to compute the eigenvector associated to a greatest eigenvalue of S in order to determine the direction of the so-called principal components [3]. It is well know that computation of eigenvalues of general matrices is expensive, and therefore, several authors use techniques of numerical approximation [5]. Furthermore, computations are more efficient whenever the matrices are sparse.

Descargas

Los datos de descargas todavía no están disponibles.

Publicado

2018-12-19

Número

Sección

Resumos