Transport properties in the discontinuous dissipative standard mapping

Authors

  • Juliano A. de Oliveira
  • Rodrigo M. Perre
  • J. A. Méndez-Bermúdez
  • Edson D. Leonel

Abstract

The dissipative two-dimensional nonlinear mapping that describes a kicked rotator given by a rigid bar of length L with one end attached by a pivot and the other end subjected to a vertical and periodic impulsive discontinuous force has the following form [1] In+1 = (1 − γ)In + kf (θn ) sin(θn ), T : (1) θn+1 = [θn + In+1 ] mod (2π) where I and θ are the action and angle variables, k and γ are control parameters responsible for controlling the intensity of nonlinearity and dissipation respectively. Figure 1 shows the phase space using control parameters k = 102 and γ = 10−3 which we observe chaotic attractors. The I ∗ is an approximation of the maximum value of the chaotic attractors. [...]

Downloads

Download data is not yet available.

Author Biographies

Juliano A. de Oliveira

UNESP, São João da Boa Vista, SP

Rodrigo M. Perre

UNESP, São João da Boa Vista, SP

J. A. Méndez-Bermúdez

Benemérita Universidad Autônoma de Puebla, Mexico

Edson D. Leonel

UNESP, Rio Claro, SP

References

R. M. Perre, B. P. Carneiro, J.A. Méndez-Bermúdez, Leonel E. D. e de Oliveira J. A. “On the dynamics of two-dimensional dissipative discontinuous maps”. Em: Chaos Solitons and Fractals 131 (2020), pp. 109520-1–109520-4. doi: 10.1016/j.chaos.2019.109520.

J. A. de Oliveira, D. R. da Costa e Leonel E. D. “Survival probability for chaotic particles in a set of area preserving maps”. Em: The European Physical Journal Special Topics 225 (2016), pp. 2751–2761. doi: 10.1140/epjst/e2015-50330-y.

Downloads

Published

2023-12-18