Correlation between image quality measurement of diferente image enhancement algorithms and Cascade R-CNN detection results applied to teeth detection in panoramic X-Ray images

Autores

  • Claudia L. Giardina Universidad Nacional Asunción
  • Jose Luis Vázquez Noguera Universidad Nacional Asunción
  • Horacio Legal-Ayala Universidad Nacional Asunción
  • Vicente R. Fretes Universidade de São Paulo, Ribeirão Preto
  • Diego Defazio Centro de Diagnóstico y Tratamiento Periodontal
  • Luis Salgueiro Universitat Politécnica de Catalunya

Resumo

Automatic teeth detection and segmentation in dental radiographs play a significant part inforensic  identification  and  are  considered  the  first  step  towards  more  complex  systems  for  oralhealthcare [3]. [...]

Downloads

Não há dados estatísticos.

Referências

Barash. D. Bilateral Filtering and Anisotropic Difusion: Towards a Unified Viewpoint,Scale-Space and Morphology in Computer Vision, volume 2106, 2001. DOI: 10.1007/3-540-47778-024.

Cai, Z. and Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and InstanceSegmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:1483–1498, 2019. DOI: 10.1109/TPAMI.2019.2956516

Chen, H., Zhang, K., Lyu, P., Li, H., Zhang, L., Wu, J. and Lee, C. A deep learning approachto automatic teeth detection and numbering based on object detection in dental periapicalfilms,Scientific Reports, 9, 2019. DOI: 10.1038/s41598-019-40414-y.

Mello, J. C., Fretes, V. R., Adorno, C. G., Gariba, R. V ́azquez, J. L., Legal-Ayala, H., Mello-Rom ́an, J. D., Escobar, R. D. and Facon, J., Panoramic Dental Radiography Image Enhance-ment Using Multiscale Mathematical Morphology,Sensors, 21, 2001. DOI: 10.3390/s21093110.

Schwendicke, F., Golla, T., Dreher, M. and Krois, J. Convolutional neural networksfor dental image diagnostics: A scoping review,Journal of Dentistry, 91, 2019. DOI:10.1016/j.jdent.2019.103226.

Silva, G, Oliveira, L., and Pithon, M. Automatic segmenting teeth in X-ray images: Trends,a novel data set, benchmarking and future perspectives,Expert Systems with Applications,107:15–31, 2018. DOI: 10.1016/j.eswa.2018.04.001.

Downloads

Publicado

2021-12-20

Edição

Seção

Resumos