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Abstract: In this communication we briefly describe some results related to the nonlinear dif-
ferential Boussinesq equation for groundwater flow with an emphasis in hydrology. We review
important characteristics of the equation and some of its solutions. The equation is then solved
for an infinite aquifer with constant boundary conditions in three distinct ways: one looking for
a solution as a function of the similarity variable, that is, the classical approach, and the other
two by means of alternative interpretations of variable dependence. All of the solutions are based
on series expansions.
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1 Introduction

The Boussinesq equation, first introduced by Boussinesq (1904), models groundwater flow when
the effects of capilarity are not important. Mathematically, it can be classified as a nonlin-
ear diffusion equation, with the diffusion coefficient varying linearly. For a homogeneous and
horizontal domain, the equation can be written as

ne
∂h

∂t
= k0

∂

∂x

(
h
∂h

∂x

)
, (1)

where k0 and ne are the saturated hydraulic conductivity and the drainable porosity, respectively;
x and t are horizontal coordinate and time; and h(x, t) is the water level above the impervious
bottom.

One of its most common uses in hydrology is the modelling of aquifer-stream systems, such
as the one presented in Fig. 1, which depicts two rectangular banks with a water stream in the
middle — a simple representation of a water basin. The Boussinesq equation can be used to
solve one of the sides and then extrapolate the solution to the other side by symmetry. With
this procedure not only the water table height is known, but also the water discharge at the
stream (Brutsaert and Nieber, 1977; Rupp and Selker, 2006).
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The boundary conditions for each side are

h(x, t = 0) = H, h(x =∞, t) = H, h(x = 0, t) = H0, x ≥ 0, (2)

where it is assumed that the aquifer length B is infinite, so that one can transform (1) in an
ordinary differential equation using the well-known Boltzmann transformation of variables

φ(ξ) ≡ h(x, t)

H
, ξ ≡ x√

4Dt
, (3)

where D = Hk0/ne. This reduces Eq. (1) and the boundary conditions (2) to

d

dξ

(
φ
dφ

dξ

)
+ 2ξ

dφ

dξ
= 0 (4)

with

φ(0) =
H0

H
= φ0, φ(∞) = 1, φ0 ≥ 0. (5)
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Figure 1: Aquifer-stream system which can be modelled by the Boussinesq equation.

In this work we focus on the ordinary differential equation problem composed by Eqs. (4)
and (5), which is valid for early times of a discharging aquifer (Brutsaert, 2005; Chor et al.,
2013).

2 General solution

In this section we derive a series solution by means of a recurrence relation. The relation derived
here generalizes the solutions presented in Chor et al. (2013) for a homogeneous case (H0 = 0)
and Dias et al. (2014) for a nonhomogeneous case (H0 6= 0). Begin by integrating Eq. (4) from
an arbitrary point ξa to ξ, which produces:

φ
dφ

dξ
− ψa + 2

(
ξφ
∣∣∣ξ
ξa
−
∫ ξ

ξa

φdξ

)
= 0, (6)

where

ψ ≡ φdφ
dξ
, (7)

and where we use the notation ξa for the point of expansion of the series, φa = φ(ξa) and
ψa = ψ(ξa).
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Assuming that the Boussinesq function φ can be expressed as

φ(ξ) =

∞∑
n=0

an(ξ − ξa)n/2, (8)

it follows, after substituting Eq. (8) into (6), that

a1a0 = a1φa = 0, (9)

a21
2

+ a2a0 = ψa, (10)

3(a1a2 + a3a0) + 4ξaa1 = 0. (11)

The final recurrence relation depends on the conditions at the point of expansion. If φa 6= 0
(nonhomogeneous case), then a0 6= 0 and we have

an+4 = − 1

(n+ 4)a0

(
n+ 4

2

n+3∑
k=1

akan−k+4 +
4n

n+ 2
an + 4ξaan+2

)
. (12)

If, however, φa = 0 (homogeneous case), then a0 = 0 and one has the recurrence relation

an+3 = − 1

(n+ 4)a1

(
n+ 4

2

n+2∑
k=2

akan−k+4 +
4n

n+ 2
an + 4ξaan+2

)
. (13)

It becomes clear after analysing Eqs. (9)–(11) and (8) that if the series is expanded about
a point such that φa = 0, then a0 = 0. In this case the first non-zero term of the expansion is
a1 =

√
2ψa, configuring a singular behavior of the series at ξa. If, however, φa 6= 0, then all the

odd numbered coefficients (a1, a3, a5. . . ) are zero, cancelling out all the fractional exponents
and effectively making the series a Taylor series.
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Figure 2: Functions φ and ψ for the homogeneous case obtained with the recurrence relations
given by Eq. (12) (for φ0 = 0.6 in the dotted line) and Eq. (12) (for φ0 = 0 in the solid line).

Figure 2 shows the series expansion for φ0 = 0.6 (dotted line) and for the homogeneous case
φ0 = 0 (solid line). The main advantage of this solution is that it is general enough to allow the
use of the principle of analytical continuation in order to reproduce the function in the whole
semi-infinite domain with arbitrary precision. This can be done because of the capacity of the
series to be expanded about any point in the domain. As an example, the graphs in Fig. 2 were
plotted with the help of two successive series expansions, about 0 and 2.3.

The analytical continuation is a necessity, because regardless of the point of expansion the
series will not converge in the whole domain. The reason for it lies in the many singularities
that appear in the complex-plane of the function, as can be seen in Fig. 3.
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Figure 3: The complex-plane of φ(ξ), where one can see many singularities represented by the
black dots. Left graph is case φ0 = 0 and graph on the right is case φ0 = 0.6.

3 Derivation of an “inverted” series solution

In this section we tackle the same problem, but with ξ as a function of φ; that is to say we find
ξ(φ). From now on we consider solely the problem expanded about ξ = 0 (i.e., the variables φ0
and ψ0). One can easily transform Eq. (4) into

d

dφ

(
φ

ξ′

)
+ 2ξ = 0. (14)

First assume that ξ(φ) can be written as

ξ(φ) =

∞∑
n=1

cn(φ− φ0)n. (15)

Consider now Eq. (14) integrated from φ0 to φ and multiplied by a factor ξ′:

φ− ξ′ψ0 + 2ξ′
∫ φ

φ0

ξ(φ)dφ = 0, (16)

where the value of ψ0 = ψ(0) is necessary to complete the initial conditions of the problem. In
Section 4 we will show how to obtain it a priori.

Substituting Eq. (15) into (16) one has

c1 =
φ0
ψ0

(17)

c2 =
1

2ψ0
, (18)

and a recurrence relation can be derived:

cn+2 =
2

(n+ 2)ψ0

n∑
k=1

n− k + 1

k + 1
ckcn−k+1. (19)

The series solution obtained via equations (15) and (19) is presented in Fig. 4 for ξ(φ).
Figure 4-a shows the direct result of the series (i.e. ξ(φ)) and Fig. 4-b shows the same results
inverted back to the regular physical variables and interpolated (i.e. φ(ξ)).
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Figure 4: ξ(φ) obtained via Eqs. (15) and (19) (left) and φ(ξ) obtained after inverting the
results of the same equations (right).

The main advantages of this series solution in comparison to the one given by Eqs. (12)–(13)
are: (i) this solution is capable of reproducing the function φ in the range of interest; (ii) the
fact that cases where the point of expansion is a singularity in the φ(ξ) form do not have to
be dealt with differently than an expansion around a non-singular point, i.e. there is only one
recurrence relation.

On the other hand, the shortcomings of Eq. (19) with (15) are (i) the need to interpolate the
results and trace them back to the form of φ(ξ) in order for the solution to have real physical
application; and (ii) the fact that the convergence of the series close to the pole in φ = 1 is slow,
which makes necessary the use of a large number of terms in that region.

One feature of Eq. (14) is that it can be used to find the singularities of Eq. (4) (as shown
in Fig. 3). This is done by doing a complex integration of Eq. (14) up to the origin (φ = 0).
The positions of the black dots in Fig. 3 are the different values that ξ(φ) takes for different
paths of integration made in order to retrieve this variable.

4 Determination of the initial conditions

We now focus on the determination of the initial conditions for the problem without the aid of
numerical integration, which roughly means knowing the value of the variable φ0 before solving
for φ(ξ) (regardless of the method used to solve). Eq. (4) can be rewritten as

ψ
d2ψ

dφ2
= −2φ, (20)

which has the advantage of eliminating ξ and treating φ as the independent variable, thus
reducing the problem from a semi-infinite domain to a finite one (φ0 ≤ φ ≤ 1). The inversion of
varibles produces the conditions

dψ

dφ
(φ0) = 0, ψ(1) = 0, ψ(φ0) = ψ0. (21)

Let us assume then that ψ(φ) can be expressed as

ψ =

∞∑
n=0

bn(φ− φ0)n. (22)
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Figure 5: Function ψ(φ) calculated with the series (22) for φ0 = 0.3. The value of ψ0 was
calculated with the new iterative procedure involving Eq. (28).

Substituting Eq. (22) in Eq. (20) along with the boundary conditions, one can derive

b0 = ψ0 (23)

b1 = 0 (24)

b2 = −φ0
ψ0

(25)

b3 = − 1

3ψ0
(26)

which makes it possible to write the recurrence relation for bn as

bn+2 = − 1

ψ0(n+ 2)(n+ 1)

n∑
k=1

(n− k + 2)(n− k + 1)bkbn−k+2, n > 1. (27)

Fig. 5 illustrates ψ(φ) obtained with an application of Eq. (27) for the case φ0 = 0.3.
Callegari and Friedman (1968) proved that Eq. (22) with (27) converges for 0 ≤ φ0 ≤ 1, so it
can be used to reproduce the boundary condition ψ(φ = 1) = 0. By doing this, one can estimate
the correct value of ψ0 analytically by solving

∞∑
n=0

bn(1− φ0)n = 0. (28)

As far as the authors are concerned, this determination of ψ0 is the first analytical method
to obtain the value of ψ0 with arbitrary precision for every case within 0 ≤ φ0 ≤ 1. The
implementation of this method (defined by Eqs. (28) and (23)–(27)) has to be done iteratively
since for every new iteration the new bn coefficients have to be recalculated.

5 Conclusion

In this work we studied the Boussinesq equation for groundwater flow. Although hydrology
applications are our main interest, the results presented here apply to similar nonlinear diffusion
equations in which the diffusion coefficient varies linearly with the dependent variable.

We have solved the problem with three methods: two of them effectively produce the desired
water table height as a function of the physical variables (i.e., h(x, t)), while the third method

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0526 010526-6 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0526


is used primarily to obtain the initial conditions to correctly solve the original boundary value
problem.

In practice, with the aid of the solutions presented here, the Boussinesq equation can be
solved in a much faster way than by successive numerical integrations in order to find the
correct initial condition that match the boundary condition at infinity. Furthermore, with a
deeper understanding of this nonlinear diffusion equation, the solution could become a reference
for more complicated and more general models.
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