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Abstract. This work addresses a spectral correction for the adaptive weighted normalized gradient
method in the minimization of smooth functions on a Riemannian manifold. The proposed algo-
rithm incorporates a Barzilai-Borwein-type stepsize in order to accelerate the Riemannian gradient
procedure. The new approach is globally convergent and does not require evaluating the objective
function throughout the iterative process. Our preliminary numerical experiments show that the
use of spectral correction improves the performance of the adaptive Riemannian gradient method.
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1 Introduction
The field of optimization on Riemannian manifolds has experienced significant growth in recent

years, driven by its broad applicability across various domains, including signal processing [1, 9,
19, 20], pattern recognition [9, 11, 19], matrix completion [1, 5, 9], deep learning [9], eigenvalue
computation [5, 9, 16, 17], energy minimization [9, 15], among others. On Riemannian manifolds,
the traditional gradient descent algorithm is extended to the Riemannian gradient descent, where
the updates are performed along the manifold’s geometry rather than in the ambient Euclidean
space.

Traditionally, the selection of stepsizes in the gradient method is accomplished using line-search
[12]. This approach determines suitable stepsize by evaluating the objective function multiple times
until a sufficient decrease condition is satisfied. More recently, researchers have developed adaptive
stepsize rules that rely solely on gradient evaluations in the context of Euclidean optimization.
In particular, the method WNGrad [22] is a gradient method in which the stepsize at each it-
eration is obtained as the inverse of a weighted sum of the squared norms of all the gradients
already computed by the method. Remarkably, in [22] it was shown that WNGrad performs at
most O(ϵ−2) iterations to generate an ϵ-approximate stationary point of the objective function.
Adaptive gradient descent methods have gained widespread popularity in the field of deep learn-
ing and optimization due to their ability to automatically adapt the stepsize (also called learning
rate) without conducting a line-search and avoiding cost function evaluations, leading to improved
convergence and generalization. Indeed, Grapiglia et. al. in [8] generalized the WNGrad method
to minimize smooth functions on a Riemannian manifold.

On the other hand, it is well-known that spectral stepsizes are often able to improve the numeri-
cal performance of gradient methods while maintaining low computational cost, which makes them
attractive for solving large-scale problems, see [4, 6, 13, 18]. In this work, we propose an adaptive
gradient method, which maintains the algorithmic structure of the general procedure presented in
[8], and incorporates a spectral stepsize to accelerate the numerical performance of the Grapiglia’s
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method.

The rest of this paper is organized as follows. In Section 2, we establish the optimization
problem to be addressed and also describe the algorithm developed in [8]. In subsection 2.1,
we present the proposal which is based on the incorporation of spectral correction within the
framework of the Grapiglia’s method. Some numerical experiments are reported in Section 3.
Finally, in Section 4, we give our conclusions.

2 The Riemannian WNgrad Method

We begin this section by posing the optimization problem to be solved. In particular, we focus
on the following problem,

min f(x) s.t. x ∈M, (1)

where f :M→ R is a bounded from below smooth function (not necessarily convex) and M is a
Riemannian manifold connected and complete.

Recently, in [8] was proposed a low-cost gradient method to solve (1), namely the adaptive Rie-
mannian gradient method (ARWNGrad). ARWNGrad is a generalization of the weight normalized
gradient method (WNGrad) introduced by Wu et. al. in [22] for minimizing a continuously differ-
entiable function on the Euclidean space Rn. Let f : Rn → R be a smooth function and x0 ∈ Rn an
initial point, the WNGrad procedure computes the iterates by using the following update scheme

xk+1 = xk −
1

bk
∇f(xk), with bk = bk−1 +

1

bk−1
∥∇f(xk)∥2. (2)

Remarkably, WNGrad does not require evaluating the objective function. In addition, it was shown
in [22] that WNGrad performs at most O(ϵ−2) iterations to generate an ϵ-approximate stationary
point of the objective function. Several works have extended and analyzed the gradient method to
minimize smooth function on manifolds, see [1, 3, 7, 9, 14–17, 21]. However, none of these works
corresponds to the generalization of the iterative scheme (2). Following the ideas exposed in [22],
Grapiglia et. al. [8] quickly extended the WNGrad method to the Riemannian framework. To
accomplish this task, the iteration scheme (2) is changed to

xk+1 = expxk

(
− 1

bk
grad f(xk)

)
, with bk = bk−1 +

1

bk−1
∥grad f(xk)∥2, (3)

where for x ∈ M, TxM denotes the tangent space of M at x, expx : TxM → M denotes the
exponential map at x, this is the function such that expx(v) = γ(1) and γ is a geodesic defined in
an interval containing [0, 1] with γ(0) = x and γ̇(0) = v, for v ∈ TxM. Notice that the sequence
of stepsizes { 1

bk
} in (3) (an also in (2)) is monotonically decreasing and therefore when k grows

the stepsize 1
bk

can be very small, which makes method (3) progress very slowly throughout the
process. In order to break this pattern, in [8] the authors proposed a flexible version of the (3)
method that allows the method to use larger stepsizes under certain conditions. Following the
development in [8], the ARWNGrad algorithm is presented in Algorithm 1.
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Algorithm 1 Adaptive Riemannian Gradient Method
Require: Given x0 ∈ M, and parameters ĉ ∈ N − {0}, bmin > 0, b0 ≥ bmin and α ∈ [0, 1). Set
t0 = 1

b0
, w0 = ∥grad f(x0)∥, c0 = 0 and k = 0.

while ∥grad f(xk)∥ ̸= 0 do
xk+1 = expxk

(−tkgrad f(xk)).
if ∥grad f(xk+1)∥ ≤ αwk then

if ck + 1 = ĉ then
(bk+1, wk+1, ck+1) = (b̂k, ∥grad f(xk+1)∥, 0), where b̂k ∈ [bmin, bk].

else if ck + 1 < ĉ then
(bk+1, wk+1, ck+1) =

(
bk + ∥grad f(xk+1)∥2

bk
, wk, ck + 1

)
.

end if
else

(bk+1, wk+1, ck+1) =
(
bk + ∥grad f(xk+1)∥2

bk
, wk, 0

)
.

end if
Define tk+1 = 1

bk+1
.

k ← k + 1.
end while

In Algorithm 1 the terms ĉ, bmin, b0 and α are global parameters which must be selected by
the user (they can even be chosen randomly), clearly satisfying their corresponding conditions as
described at the beginning of Algorithm 1. In the section on numerical experiments (see Section
3), we comment on how they will be chosen. Observe that when α = 0, Algorithm 1 reduces to the
Riemannian extension of WNGrad presented in (3). The above algorithm is globally convergent
(under Lipschitzian assumptions on the Riemannian gradient) and computes an ϵ-approximate
stationary point of the objective function in at most O(ϵ−2) gradient evaluations when α = 0. For
α > 0 the Algorithm 1 has a worst case complexity bound of O(| log(ϵ) | ϵ−2) gradient evaluations,
for details, see [8].

2.1 An ARWNGrad With Spectral Correction
In this subsection, we present the contribution of this paper. In particular, our goal is to

incorporate a Barzilai-Borwein-type stepsize into the Algorithm 1. Notice that Algorithm 1 leaves
an open window for the selection of the term b̂k, which directly impacts the calculation of the
stepsize tk+1. In [8] the authors proposed to compute this scalar by the following relation

b̂k = min

{
b0,max

{
bmin,

bk
3ĉ

}}
.

Although this formula showed numerical advantages versus the method given by (3) (Algorithm 1
with α = 0), this heuristic does not take advantage of quasi-Newton information. In view of this,
we propose to calculate b̂k as follows

b̂k = min

{
bk,max

{
bmin,

1

τBB
k

}}
with τBB

k =
∥sk−1∥
∥yk−1∥

, (4)

where the tangent vectors sk−1, yk−1 ∈ Txk
M are given by

sk−1 = Txk−1→xk
(−tk−1grad f(xk−1)) = −tk−1Txk−1→xk

(grad f(xk−1)), (5)

and
yk−1 = grad f(xk)− Txk−1→xk

(grad f(xk−1)) = grad f(xk)−
1

tk−1
sk−1, (6)
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respectively. In the above equations, the map Txk→xk+1
: Txk

M→ Txk+1
M is a vector transport,

see Definition 8.1.1 in [1]. Note that the stepsize τBB
k is the geometric mean of the Riemannian

version of the spectral stepsizes

τBB1
k =

∥sk−1∥2

⟨sk−1, yk−1⟩
and τBB2

k =
⟨sk−1, yk−1⟩
∥yk−1∥2

, (7)

which were originally derived by Barzilai-Borwein [2] by imposing a quasi-Newton property in the
context of minimization on Rn and extended to the Riemannian setting by Iannazzo et. al. [10].
Although the spectral stepsizes (7) were introduced in [10] to accelerate the standard Riemannian
gradient method [1], they were used in combination with a non-monotone line-search, so the scheme
proposed in [10] requires evaluating the objective function at least once per iteration. By contrast,
in this work we propose the use of spectral stepsizes within the framework of Algorithm 1, which
does not need to evaluate the objective function.

3 Computational Results
In this section, we compare the numerical behavior of the proposal in two groups of experiments.

The purpose of these experiments is to illustrate numerically that the incorporation of spectral
correction in Algorithm 1 can sometimes lead to better efficiency, in terms of the number of
iterations and CPU time. We performed computational experiments comparing the following
methods

• ARMIJO: the Riemannian gradient method equipped with Armijo line-search.

• RSGM: the Riemannian spectral gradient method equipped with the nonmonotone Zhang
and Hager’s line-search in combination with the stepsize τBB

k presented in (4).

• RWNG: Algorithm 1 with α = 0 and b0 = ∥grad f(x0)∥.

• ARWNG: Algorithm 1 with α = 0.9, ĉ = 5, b̂k = min{b̂max,max{10−4, bk/(3ĉ)}}, where
b̂max = b0 = ∥grad f(x0)∥.

• ARWNGs: Algorithm 1 with α = 0.9, ĉ = 5, b̂k according to (4), where bmin = 10−4.

All these procedures were implemented in MATLAB (R2016a) and the experiments were performed
on an 11th Gen Intel(R) Core(TM) i5-1135G7, CPU 2.40GHz with 8 GB RAM. In stop all these
methods using the stopping condition ∥grad f(xk)∥ ≤ 10−4 or with the maximum number of
iterations k = 100000. In the two groups of experiments, we consider optimization problems over
the Riemannian manifold P++ = {X ∈ Rn×n : X⊤ = X, X ≻ 0}, that is, the set of all the
n-by-n symmetric positive definite matrices. The exponential map expX : TXM→M associated
with this manifold is given by expX(V ) = X1/2expm(X−1/2V X−1/2)X1/2, where expm denotes
the exponential matrix. In all the tables reported in this section, Iter, Nfe, Time and Grad denote
the averaged of number of iterations, the averaged of number of objective function evaluations, the
averaged total computing time in seconds and the averaged gradient norm ∥gradF (X̂)∥F where
X̂ is the optimum estimated by the method, respectively.

3.1 Problem Class 1
We consider the following manifold constrained optimization problem

min
X∈P++

F (X) := ln(det(X))2 − ln(det(X)). (8)
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The above problem was taken from [8]. In our first experiment, we solve (8) for n = 100. For this
value of n, the codes were run for 100 different randomly generated initial points. The starting
points were assembled following the approach described in subsection 4.1 in [8]. The results are
reported in Table 1.

Table 1: Numerical results associated with Problem Class 1 with n = 100.
Method Iter Nfe Time Grad
ARMIJO 32 257 1.6366 6.2583e-5
RSGM 9.82 10.82 0.0652 1.0220e-5
RWNG 100000 0 625.249 0.3761

ARWNG 280.76 0 1.7617 5.4098e-5
ARWNGs 63.5 0 0.3938 1.7758e-5

From Table 1, we observe that all algorithms successfully solve the problem class 1, except for
the RWNG method which stopped with the maximum number of iterations. Among the remaining
four methods, we notice that RSGM was the most efficient both in terms of number of iterations
and CPU time. Furthermore, we clearly observe that our ARWNGs outperforms the Algorithm 1
because it was more efficient than the two procedures developed in [8].

3.2 Problem Class 2
Now, we consider the following minimization problem

min
X∈P++

F (X) :=
1

2

m∑
j=1

∥ln(X−1/2AjX
−1/2)∥2F , (9)

where A1, . . . , Am are data matrices. The unique global optimum of the problem (9) is called
Karcher mean and is defined as the geometric mean of matrices, see [10]. This problem also
appears in [8]. In the second group of experiments, we select n ∈ {20, 100} and m = 10 . For
all pairs (n,m), we solve (9) for 100 different randomly generated starting points with all the
methods. Again, the initial points were constructed exactly as described in subsection 4.2 in [8].
The numerical results are collected in Table 2.

Table 2: Numerical results associated with Problem Class 2.
Method Iter Nfe Time Grad

(n,m) = (20, 10)
ARMIJO 38.02 153.33 2.8418 8.0460e-5
RSGM 5.77 6.77 0.1056 3.4181e-5
RWNG 8.68 0 0.0843 5.2236e-5

ARWNG 32.61 0 0.3181 6.1549e-5
ARWNGs 7.22 0 0.0697 4.1748e-5

(n,m) = (100, 10)
ARMIJO 131.53 528.33 145.877 4.7892e-5
RSGM 7.81 8.81 2.1216 4.4351e-5
RWNG 48.24 0 6.8020 8.8383e-5

ARWNG 92.89 0 13.1205 6.8357e-5
ARWNGs 11.72 0 1.6526 5.7537e-5

From Table 2 we notice that ARWNGs was superior to the rest of the approaches and surpris-
ingly solved the problem (9) in less computational time than RSGM. We also note that between the
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two procedures developed in [8], the more basic version of Algorithm 1 (RWNG) performed better
than the elaborate version (ARWNG). Nonetheless, our spectral correction strategy improves the
performance of Algorithm 1. The ARMIJO method solved the problem very slowly.

4 Conclusion
In this work, we have addressed the problem of minimizing a continuously differentiable function

over a Riemannian manifold. To solve this problem, we consider a recently introduced adaptive Rie-
mannian gradient method, called ARWNGrad, which does not need to execute line-search through-
out the entire iterative process. In particular, the stepsizes are determined by a closed-formula.
The considered approach preserves all the theoretical guarantees of the standard Riemannian gra-
dient method and its algorithmic simplicity. With the aim of improving the numerical behavior of
ARWNGrad, we have incorporated a spectral correction in the computation of the stepsize based
on the geometric mean of the Barzilai-Borwein stepsizes, maintaining the algorithmic structure of
the ARWNGrad and its established theory. We have conducted some numerical experiments to
evaluate the proposal in two optimization problems defined on the set of all the n-by-n positive
definite matrices. Our numerical results clearly show that the proposed procedure outperforms the
original versions of the ARWNGrad method.
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