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Abstract This work focuses on optimizing power flow in the electrical sector, considering uncer-
tainties in energy demand, to minimize costs and energy loss, within the constraints of the physical
network. We use a two-stage stochastic programming, creating discrete scenarios associated with
the uncertainty of demand. The problem is solved using MSSO-BlockIP, a specialized software
employing the Interior-Point Method for stochastic programming. The work presents the math-
ematical formulation using splitting variables and provides computational results, comparing this
approach with a traditional one. The findings indicate that the proposed method yields solutions
consistent with Gurobi, achieving notable improvements in terms of running time and the number
of iterations.
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1 Introduction
Optimization of power flow is important for the efficiency of the electrical sector, impacting

generation costs, transmission reliability, energy production, and ensuring operational safety. Un-
certainty is important in this context, influencing both short and long-term plans.

This work exploits how uncertainty in energy demand affects the determination of the ideal
power flow. We focus on finding an effective method to minimize the costs and energy loss asso-
ciated with power flow that admits demand fluctuations, considering the physical constraints of
the electrical network. This problem is crucial for the efficiency of the electrical sector, directly
impacting costs, minimizing power losses, and affecting planning.

Two-stage stochastic programming is a feasible approach to handle demand uncertainty [8].
This methodology allows for creating discrete scenarios with their associated probabilities, provid-
ing a robust framework to address the complexity of demand variations, unlike the non-stochastic
approach that does not account for randomness.

Our methodological strategy involves splitting the variables to create blocks associated with
discrete demand scenarios and stages, aiming to build a constraint matrix by blocks. This process
will be conducted using computational methods optimized for this type of structure, employing
the Interior-Point method for quadratic problems, enabling the resolution of the optimal power
flow problem even under conditions of uncertainty in energy demand.

The remainder of this work is organized as follows. Section 2 presents the pre-dispatch problem
and its two-stage stochastic extension for demand uncertainty, along with the block structure used
for its solution. Section 3 provides computational results, and Section 4 concludes.
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2 Optimal Power Flow
The operations of energy systems require the use of specialized methods to optimize resource

utilization, aiming to minimize costs and losses in energy generation and transmission. Addition-
ally, the system must be prepared to handle unexpected events, as well as variations in energy
demand throughout the day and the climatic season of the year. During the pre-dispatch of hydro-
electric systems, power plants must meet established goals through long-term planning. Knowing
this, we seek to fulfill the requirements of uncertain demand, minimizing thermal generation costs
and conserving water resources.

The Optimal Power Flow problem is an optimization problem in the energy sector that aims
to optimize an objective function such as economic dispatch, subject to constraints reflecting
operational limits and physical laws of the electrical network. These constraints are associated
with Kirchhoff’s laws for the nodes and transmission lines of the electrical network. We will use
the network flow model for the Optimal Power Flow DC as developed in [2, 3, 9].

The mathematical problem of the Optimal Power Flow DC is given by

min
β

2

(
pTQp+ cTq p

)
+

α

2
fTRf

s.t Af = Hp− d

Tf = 0

pmin ≤ p ≤ pmax

fmin ≤ f ≤ fmax,

(1)

where α and β are weights associated to the objective function, A ∈ Rm×n corresponds to the
incidence matrix of the network, where m is the number of nodes and n is the number of edges
in the electrical network. d ∈ Rm is the power demand; f ∈ Rn represents the active power flow;
p ∈ Rg represents the active power generation and g is the number of generators in the system;
the diagonal matrix Q ∈ Rg×g and cq ∈ Rg are associated with the generation cost; the diagonal
matrix R ∈ Rn×n represents the resistance of the transmission lines; H ∈ Rm×g is given by g
columns of the identity matrix, and each column represents a generation bus; T ∈ Rn−m+1×n is
the reactance matrix of the transmission network. pmin, pmax ∈ Rg are the power generation’s
boundaries, and fmin, fmax ∈ Rn the power flow’s limits. The first two constraints are related to
Kirchhoff’s laws, and the last ones represent the lower and upper limits of active power generation
and active power flow.

The first part of the loss function represents the cost of plant generation, and the second part
represents the value of transmission losses.

As mentioned earlier, the energy sector involves uncertain parameters that need to be analyzed
stochastically. In this context, we propose to address the uncertainty in demand through a proba-
bilistic approach. To achieve this, it is possible to use a two-stage stochastic programming model
with fixed recourse, considering the uncertain demand [1, 5].

Let us consider the generation from hydroelectric plants as first-stage variables, using the
variable p1 ∈ Rg1 , with g1 hydroelectric plants, while the generation from thermal power plants,
denoted by p2 ∈ Rg2 , involves g2 thermal power plants. Thus, the stochastic programming problem
is

min
β

2

(
(p1)TQ1p

1 + cT1 p
1
)
+ EϵQ(p1, ϵ)

s.t. p1min ≤ p1 ≤ p1max,
(2)

where EϵQ(p1, ϵ) is the expected value, Q(p1, ϵ) has variables p2 := p2(ϵ) and f := f(ϵ) dependent
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on the random variable ϵ. The probabilistic problem is given by

Q(p1, ϵ) = min
β2

2

(
(p2)TQ2p

2 + cT2 p
2
)
+

α

2
fTRf

s.t. H1p
1 +H2p

2 −Af = d(ϵ)

Tf = 0

p2min ≤ p2 ≤ p2max

fmin ≤ f ≤ fmax,

(3)

where H1 ∈ Rm×g1 , H2 ∈ Rm×g2 , d(ϵ) is the uncertain demand, the diagonal matrix Q1 ∈ Rg1×g1

and c1 ∈ Rg1 are the costs of hydroelectric plants, while Q2 ∈ Rg2×g2 and c2 ∈ Rg2 are the costs
of thermal power plants.

Given that there is no closed-form expression for Q(p1, ϵ), then, we adopt an approach of the
stochastic problem [6]. In this context, we assume that ϵ is a discrete random variable with N
possible scenarios having values ϵ1, . . . , ϵN , each associated with probabilities a1, . . . , aN . Conse-
quently, each variable and constraint from the second stage is replicated for each scenario. In other
words, we introduce variables p2j and fj associated with scenario j ∈ 1, . . . , N .

The problem (3) is defined for a fixed time. We may extend it with a planning horizon of t
hours. Assuming ph is the target for hydroelectric plants, we obtain the variable p1i for stage one,
p2ij , fij as stage two variables, and dij as the uncertain demand, where i ∈ 1, . . . , t and j ∈ 1, . . . , N .
Thus, the optimal power flow problem with uncertain demand for a planning horizon of t hours,
known as the pre-dispatch problem, is defined as:

min

t∑
i=1

{
β1

2

(
(p1i )

TQ1p
1
1 + cT1 p

1
i

)
+

N∑
j=1

aij

[
β2

2

(
(p2ij)

TQ2p
2
ij + cT2 p

2
ij

)
+

α

2
fT
ijRfij

]}

s.t.
t∑

i=1

p1i = ph

H1p
1
i +H2p

2
ij −Afij = dij

Tfij = 0
p1min ≤ p1i ≤ p1max

p2min ≤ p2ij ≤ p2max

fmin ≤ fij ≤ fmax

 i = 1, . . . , t; j = 1, . . . , N.

(4)

Definition 2.1. The here-and-now solution corresponding to the recourse problem (RP) solution
is the optimal solution at the beginning of the planning horizon, that is, the optimal solution of the
first stage considering all possible scenarios of uncertain parameters in the second stage. This is
RP = minx Eϵ[z(x, ϵ)].

Since the random variable ϵ is discrete, the (RP) of the pre-dispatch problem is formulated as
in equation (4).

Definition 2.2. The expected solution (EV) is the optimal value considering the mean of the
random variable ϵ.

Definition 2.3. If x = x̄(ϵ̄) the solution of the first stage of EV, the expected value solution
(EVS) is the solution of the second stage assuming x as an input parameter.

To efficiently address the pre-dispatch problem under uncertainty, the formulation reveals a
block structure that enables scalable solution methods. The next section formalizes this structure
to guide the optimization process.
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2.1 Block Structure Formulation

In the present work, we use the variant path-following Interior-Point method for quadratic
programming problems [7]. In the process of solving quadratic programming problems with the
Interior-Point method, there is an option to employ the Cholesky factorization of the matrix ÃΘÃT ,
where Ã is the constraint matrix in (4), and Θ is a diagonal matrix with positive entries. However,
given the block structure of the matrix Ã, the matrix product ÃΘÃT may have many non-zero
entries. To mitigate this, we will rewrite the problem by introducing splitting variables.

min

t∑
i=1

{
β1

2

(
(p1i1)

TQ1p
1
i1 + cT1 p

1
i1

)
+

N∑
j=1

+aij

[
β2

2

(
(p2ij)

TQ2p
2
ij + cT2 p

2
ij

)
+

α

2
fT
ijRfij

]}

s.t
t∑

i=1

p1i1 = ph

H1p
1
ij +H2p

2
ij −Afij = dij

Tfij = 0
p2min ≤ p2ij ≤ p2max

fmin ≤ fij ≤ fmax

p1min ≤ p1ij ≤ p1max

 i = 1, . . . , t; j = 1, . . . , N − 1,

(5)

p1ij − p1i,j+1 = 0, j = 1, . . . N − 1, i = 1, . . . , t. (6)

The constraints (6) are the splitting variables. To check the block structure of optimization problem
(5)-(6), we define the following notation

Ã =


Ĩ
M1 W1

M2 W2

...
. . .

MN WN

 , (7)

where

Ĩ = [I1 . . . It], Mj =

H̃1

. . .
H̃t

 , Wj =

T̃1

. . .
T̃t

 , j = 1, . . . , N, (8)

for Ii = Ig1 , with i = 1, . . . , t, where Ig1 is an identity matrix g1 × g1, and

H̃i =

[
H1

0

]
, T̃i =

[
H2 −A
0 T

]
, i = 1, . . . , t. (9)
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Therefore, using the matrix notation defined in (8) and (9), the constraint matrix of the problem
(5)-(6) without the lower and upper bounds is given by

Ã =



Ĩ
M1 W1

M2 W2

M3 W3

. . .
MN−1 WN−1

MN WN

I −I
I −I

. . .
I −I



. (10)

The splitting variables guarantee that the first-stage decision variables remain feasible under every
scenario, producing the block-diagonal structure shown in matrix (10). Because the same first-
stage decisions are applied across all scenarios, the non-anticipativity requirement is satisfied. This
block-structure methodology was studied by [4] and later extended to two-stage stochastic problems
in [6] and multistage stochastic optimization in [5].

3 Computational Tests

This section presents the results of our computational study. The problems were performed
in a Linux Environment, on an Intel Core i7-3770K, processor 3.50GHz with 32 GB RAM, using
the specialized package for Multistage Stochastic Programming MSSO-BlockIP [5]. To analyze the
computational results, we introduce the following definitions from [1].

3.1 Network Energy

We tested the IEEE30 bus system model. In numerical tests, we defined 2/3 of the generation
capacity corresponding to hydroelectric plants and the remaining 1/3 capacity to thermal power
plants. The lower limit of the generators was set to zero for both hydroelectric and thermal power
plants. The upper limit of active power flow was defined according to the system IEEE30. The
costs of active power generation for thermal power plants were considered fifteen times the costs
of generation for hydroelectric plants.

3.2 Energy Demand

To analyze the optimization of the RP through a block-based method, we use data from Brazil
for demand. The hourly load curve dataset from the Operador Nacional de Sistema Elétrico (ONS)
[10] serves as the basis for this research. The data were collected for each hour from 2009 to 2019.

3.3 Scenario Definition

We generate 10 scenarios for the demand over a 24-hour period. Eight scenarios are derived
from historical data, each with a probability of 12%. We employ a Monte Carlo simulation-based
sampling approach to generate these scenarios. Additionally, scenarios 9 and 10, each with a 2%
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probability, account for a 20% increase/decrease relative to the mean data presented in Section
3.2.

For the present work, we obtain RP solution according to the block structure of the constraint
matrix defined in (10) using the MSSO-BlockIP package [5].

In Table 1, we analyze the obtained results for planning 24 hours by modifying the values of α
and β defined in equation (5)-(6). To minimize generation costs, we assume α = 0 and β1 = β2 = 1;
and for transmission costs, we set β1 = β2 = 0 and α = 1. Additionally, the optimization problem
for both generation and transmission is tested assuming α = β1 = β2 = 1.

Table 1: IEEE30 values for transmission and/or generation optimization approach.
Optimization Value of RP
Generation 7.8 · 105

Transmission 9.6 · 105
Generation and Transmission 1.5 · 106

Table 2 compares the RP problem solved with variable-splitting via MSSO-BlockIP against
the same problem solved with Gurobi-Python (UNICAMP academic license). The MSSO-BlockIP
approach shows clear gains, reducing both the total running time and the number of iterations
relative to Gurobi-Python.

Figure 1 presents the optimal value for the Generation and Transmission case, considering the
respective values of α and β as specified. The graph illustrates the satisfaction of the requirement
EV S ≥ RP (see [1]). Additionally, the hours of highest cost occur in the afternoon, while the
lowest-cost hours are observed late at night.

Figure 1: Optimized cost per hour. Font: author.

Table 2: IEEE30 number of iterations for comparing splitting variables approach for Generation and
Transmission problem.

Optimization Number of iterations Time(s)
RP MSSO-BlockIP 11 0.14
RP Gurobi-Python 13 0.20
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4 Conclusions
We formulate the optimal power flow problem over a t-hour planning horizon considering de-

mand uncertainty. Using a two-stage stochastic programming model, the first stage covers hy-
droelectric generation and the second thermal generation. Demand uncertainty is modeled as a
discrete random variable, generating multiple scenarios. We apply a block strategy with splitting
variables to create a block-structured constraint matrix, enabling the use of specialized optimiza-
tion methods. Computational tests show improvements in iterations and runtime compared to
general-purpose software, demonstrating the effectiveness of our approach.

This work contributes to new solution methods for various energy system optimization prob-
lems, including maintenance and security constraints.
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