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Resumo. Investigamos a definigdo de uma estrutura algébrica sobre curvas simétricas rotacio-
nais para criptografia, adaptando o protocolo de ElGamal. Propomos uma operacao binaria entre
pontos da curva e justificamos matematicamente a escolha dos parametros para evitar autointerse-
¢oes. Implementamos e testamos computacionalmente o método, explorando sua viabilidade como
alternativa as abordagens tradicionais baseadas em RSA e curvas elipticas.
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1 Introducao

A criptografia moderna fundamenta-se na complexidade computacional de problemas matemé-
ticos, sendo utilizados esquemas como RSA e a criptografia baseada em curvas elipticas (ECC) [10,
13]. Além dessas abordagens, propostas alternativas exploram estruturas geométricas e algébricas,
como toros algébricos [11], curvas hiperelipticas [8], curvas de Lissajous [9] e variagbes de curvas
elipticas como as curvas de Edwards [4], curvas de Hessian [2] e curvas Doche-Icart-Kohel [3].

Neste trabalho, propomos um esquema criptografico alternativo baseado em curvas simétri-
cas rotacionais (CSR), curvas planares caracterizadas por propriedades geométricas de simetria e
congruéncias modulares. O sistema proposto utiliza uma operacao binéria inspirada no esquema
ElGamal [5], diretamente relacionada ao problema do logaritmo discreto no grupo multiplicativo
finito F),. Logo, nossa abordagem herda a seguranga de esquemas classicos, com resisténcia com-
paravel ao RSA-2048 e Diffie-Hellman-2048 frente ao ataque classico conhecido (NFS-DL) [1, 10].
Assim como os esquemas mencionados, também é vulneravel ao algoritmo quantico de Shor [12].

Além da formulagao tedrica, validamos a proposta com uma implementacao computacional,
demonstrando consisténcia, desempenho e possivel aplicabilidade prética em contextos como crip-
tografia visual, dispositivos com hardware restrito e ensino de matematica aplicada. Os resultados
computacionais confirmam o escalonamento esperado em funcao de d, e reforcam que, ao elimi-
nar exponencia¢oes em favor de somas modulares e tabelas pré-calculadas, o CSR é atraente em
cenarios como [oT, criptografia visual e ensino.

2 Curvas Simétricas Rotacionais e Suas Propriedades

A construgdo da curva descrita em [7] estabelece sua simetria rotacional. Para M = 3 temos a
“curva misteriosa” e, generalizando essa construgao para M rodas no plano complexo, temos

M
v(t) = er exp(ia;t), (1)

onde t € [0,27), M > 1, r; > 0 s&o os raios e a; € Z deve satisfazer k = a; (mod m) para k € Z.
A curva v é periodica com periodo 27 e, a cada 27/m, sofre uma rotagéo de 2kmw/m radianos.
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Teorema 2.1. Se m, k e a; sao inteiros tais que k = a; mod m para j =1,...,M, entdo, para
todo t € [0,27], a curva (1) satisfaz:

N (ZT + t> — exp <zkf§> ~ (). (2)

Como consequéncia, a seguinte definigdo caracteriza a simetria rotacional:

Definigao 2.1. Uma curva v possui simetria rotacional de ordem m se existe um inteiro k,
com ged(m, k) = 1, tal que

2
— 4+t = AL 2x~(1).
v<m+> -

Também, a curva pode satisfazer a simetria espelhada, conforme [6]. Em notagdo matricial,

V(=t) = A2 Roy(t) = Ro(1), (3)
v(=t) = Roy(), (4)
onde
_ |cos(26)  sin(26) ~ |cos(f) —sin(h)
%~ Isin(20) —cos(QH)} ¢ s |:Sin<9) cos(0) } ’ (5)

As relagoes em (3) e (4) decorrem diretamente da multiplicagao sucessiva das matrizes Ay (rotacao)
e Ry (reflexdo), o que torna imediata a demonstragio.

Isto é, Ry representa uma reflexdo em torno de uma reta r que passa pela origem com coeficiente
angular 0, e Ay é uma rotacao anti-horaria de dngulo 6 em torno da origem.

3 Resultados

Seja v uma curva com simetria rotacional de ordem m, conforme a Defini¢ao 2.1, e considere
t € [0,27). Definimos 7| o, /) COMO a restricdo da curva ao intervalo (0,27/m). Mostramos que
essa restrigdo é suficiente para descrever toda a curva. De fato, para ¢t € (0,27/m), utilizando (2) e
a propriedade de composigao de rotacoes Ag, Ag, = Ag, 1+4,, verifica-se que, para j = 1,2,...,m—1,

27
g (Jm + t) = Ajp2=y(t). (6)
Assim, para s € (0,27), temos s = j%" +t, com j%’r <s<(j+ 1)%’r Substituindo em (6)

V(s) = Ajpz=(t). (7)

Essa relagdo permite reconstruir v a partir da sua restricdo ao intervalo (0,27/m). A seguir,
determinamos condigbes sob as quais v pode ser gerada a partir da restrigdo ao intervalo (0, 7/m).

Proposicao 3.1. Se m, k e a; sdo inteiros tais que k = a; modm para j = 1,...,M, e
ged(m, k) = 1, entdo a curva definida em (1) satisfaz, para cada t € [0,27) e para todo t € [0,7/m)
comj=1,...,2m—1,
27 T T
Y ——t)=Rpz=~() e ’y(]——l—t):Rjkﬁfy(j——t) , (8)
m m m
respectivamente.
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Demonstragao. Pela equagao (4), v(—t) = Rov(t), e pelo Teorema 2.1, temos:

. 2r = Ao y(—t). 9)
(=)

Usando Agp Ry = Ry, segue que Ay 2z Ry = Ry, =, e, substituindo em (9), obtemos:
27

v (m - t) = Rp=~(t). (10)

Para j = 1 e para j > 2, aplicando a equagao anterior em s = - — ¢ e aplicando a identidade
Rop Ry = Agg e iterando a relagdo, segue que

T T K K

(G =man(E) ¢ b0 GE). o
m ™ iAm m m m

respectivamente. Concluimos a demonstragao. O

Definigao 3.1. Uma curva v € simétrica reflexiva em relagao a reta y = tan(jkm/m)x se, para
cada j=1,...,2m — 1, a imagem do ponto refletido sobre essa reta pertence a curva. Ou seja,

(i +1) = Rz (i —1). (12)

Com base na Proposicao 3.1, a curva pode ser gerada iterativamente a partir de reflexdes
sucessivas, conforme descrito no Algoritmo 1.

Algoritmo 1: Geracao de Curvas Parametrizadas Usando Reflexoes

Dados: Constantes M, m e k. Curva parametrizada ;.
Resultado: vy =~ Uy U...UY2m—1 UYom.
1 ’Y|[O,7T/77L) <M
2 paraj < 1 to 2m — 1 faga
3 Defina a reta L; por y = tan(jk)z;
Reflita «y; em relacao a L; para obter v;11;
Mez.Gnz) € Ve

[SA N

3.1 Construgao dos Pontos na Curva

Apresentamos a construgao dos pontos (); usados na cifragem e decifragem de mensagens. Os
pontos ; sao construidos explicitamente a partir dos pontos P; e P;1, distribuidos em torno de
um circulo unitario. A posicao desses pontos P; ¢ derivada das poténcias de g (mod p),

Py = (cos (' moa p)7) s (167 moa 7)) (13)

para j mod (p —1). Com os pontos P; e Pj11, o ponto Q; é dado por:
A
Qj =Pj+gﬁ(Pj+1 - P, (14)

onde A € R ¢ um parametro que ajusta a posicao de (J; ao longo do segmento entre P; e Pjy;.
A parametrizagao da curva ¢ : [0,27] — R? é dada por

p(t) = <<1 - gj\—l) cost + g—;\_l cos(gt), (1 — gj\_1> sint + p j\_ T sin(gt)) (15)

onde A é um parametro ajustavel. Observamos que, se t; = (¢/ (mod p))(27/p), entdao p(t;) = Q;.
Dessa maneira, para entender as propriedades deste conjunto de pontos, devemos estudar a curva

@Y.
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3.2 Critério para Evitar Autointersecoes

Considerando que a curva ¢ é simétrica reflexiva, a matriz da Definigao 3.1 esta dada por Rjg,
onde § = /(g —1). Em particular, para j = 1, os valores proprios sdo 1 e —1 e os vetores proprios
associados estao gerados por (1,tan(f)) e (1, — cot(d)), respectivamente.

Como consequéncia, possiveis autointerse¢oes devem ocorrer ao longo das diregoes de simetria
da curva. Além disso, segundo [6], uma CSR é invariante sob reflexdo em relagdo ao eixo z,
garantindo que interse¢oes também devem ocorrer ao longo da reta y = 0.

Proposigao 3.2. Se ¢ : [0,27] — R? € uma curva parametrizada por (15) e 0 = /(g — 1), para
que a curve @ ndo possua autointersegoes, € necessdrio que A satisfagca a condigcdo A € Iy, onde

I, = <—z‘:1,1>. (16)

Demonstracao. Para evitar autointersegoes, analisamos as interse¢oes da curva ¢ com as retas
y=tan(d)z e y =0, onde § = /(g — 1). Consideramos t = 8, pois g = 7 + 0 implica:

(@06 = ((1- 25 ) eost). (1 2 ) sin0) ) (17)

o que confirma que ¢(6) pertence a y = tan(f)x.
Outras possiveis interse¢oes sao determinadas pelo comportamento da funcao

sint — tan(0) cost

At) = 1 . 18
B =l9+ )sint — tan(f) cost — (sin(gt) — tan(0) cos(gt)) (18)
Os valores de t que anulam o denominador sao:
20 2k +1)m
ty = 4 .ty = —2mé. 19
RS g+1 " (19)
Se g > 3, entdo ty = 0 & o tnico em (0, 26).
Para a reta y = 0, consideramos
sint
Ao(t) = 1) ———— 20
olt) = (g + )Sint—sin(gt)’ (20)
com descontinuidades em t; = ((2k + 1)7)/(g9 + 1) e ¢, = —2mfb. No intervalo (—a,«) com

a =7/(g+ 1), avaliamos A9 em ¢t = 0 usando L’Hopital: Ag(t) se aproxima de —(g+1)/(g — 1)
quando ¢ tende a 0. Como Aj(0) = 0 e Aj(0) < 0, concluimos que ¢ = 0 é um méaximo local.
Para \(0), obtemos que A(t) se aproxima de 1 quando ¢ se aproxima de 6.

Com X (6) =0 e N'(6) > 0, segue que t = 6 ¢ um minimo local. Assim, A € I,. O

3.3 Definigcao de uma Estrutura Algébrica sobre os Pontos da Curva

Os pontos P; podem ser considerados em qualquer circulo de raio R > 0, levando & definigao:
. ) 2 - 2
P;=R (cos ((g] mod p)7r> , sin ((g] mod p)w>) , (21)
p p
para j mod (p — 1). Definimos o ponto Qj como:

szpj+7(131+1—ﬁj>v (22)
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e a parametrizagao da curva ¢ : [0, 27] — R? por $(t) = Ry(t). Logo, se t; = (¢° (mod p))(27/p),
vale ¢(t;) = Q;, garantindo que as propriedades que evitam autointersegoes de ¢ sejam preservadas.
Para definir uma estrutura algébrica sobre a curva, escolhemos os seguintes pardmetros:

1/2

j(u— /¢ 1 2 d

Aj:g+%7 Rj:< +C*72 modp 2) : (23)
p z (tj mod (pfl)) +y (tj mod (pfl))

ondec € Zy 1, £=—(9+1)(g—1)+¢€, u=1-€cee>0. Também, definimos as operagdes binarias:
Aj# Ak = Ajik mod (p-1), B * Rk = Rtk mod (p—1)- (24)

Finalmente, definimos a operagao sobre os pontos Qj da curva ¢ por
Qj * Qr = Q(j+k) mod (p—1)- (25)

Verificamos que essa estrutura satisfaz as propriedades de um grupo abeliano.

3.4 Meétodo de Cifragem e Decifragem Baseado na Curva

A nossa proposta de criptografia baseada em CSR segue um esquema adaptado do protocolo
de ElGamal, estruturado sobre operagdes geométricas.
3.4.1 Processo de Cifragem

1. Definigcao de parametros: escolhe-se: um namero primo p, define-se um ntimero g mod p,
que pode ser uma raiz primitiva de p; uma chave privada j.i, € uma chave aleatéria k.

2. Codificagao da mensagem: A mensagem M ¢é representada na base p por meio de
M = qgp” + ng_1p®™" + -+ 4+ n1p + no, (26)
onde n; sao os restos sucessivos da divisao de M por p, e qq é o tltimo quociente obtido.

3. Céalculo dos pontos cifrados: Para cada indice j associado a um coeficiente da mensagem,
calculam-se: o parametro angular t;; o pardmetro de ajuste A; com ¢ = 1/(g — 1); as
coordenadas do ponto Q; = (x;,y;); o fator de escala R;, com ¢ = gFJeiv (mod p). Os
pontos cifrados sao entao obtidos pela transformacao:

Lenc = Rj+k'jpriv *Ljtkjorivy  Yenc = Ltk joriv © Yitk-Gpriv- (27)
Um erro associado a cifragem é calculado para verificagdo na decifragem:
€ITOenc = xgnc + ygnc - (1 + gk.jpriv (j +k- jpl‘iv)2 (mOd p)) . (28)
4. Envio da mensagem cifrada: Para cada indice j, a terna (Zenc, Yenc, €IT0enc) € enviada
como mensagem cifrada.
3.4.2 Processo de Decifragem

1. Calculo do valor j: O valor de j é recuperado resolvendo:

xgnc + ygnc — (1 + errOenc)
gk'jpriv mod P

r = mod P, (&3 (j + k . jpriv)2 =T (mOd p) (29)

Logo, a raiz correta é escolhida minimizando o erro entre ¥; € Yenc-

2. Reconstrucao da mensagem M: Com os coeficientes j recuperados, a mensagem original
é reconstruida usando (26).
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3.5 Desenvolvimento Computacional e Discussoes

Para validar a proposta, implementamos todo o esquema em Python no Google Colab. As
bibliotecas usadas foram mpmath, sympy, secrets e pycryptodome. Os primos p com

p = nextprime(10¢ — 1), (30)

foram gerados em célula separada do Colab e nao foram incluidos nas medigoes de desempenho.

Testamos trés tamanhos de mensagem: curta (12 C), média (49 C) e longa (137 C), onde C
denota um caractere. Para cada combinacdo (mensagem,d), executamos 10 repeti¢oes da cifra-
gem e da decifragem, coletando média e varidncia dos tempos de execugao das fungoes puras de
cifra/decifra.

Tabela 1: Tempo de cifragem/decifragem CSR para diferentes digitos de p (10 execugdes).

Digitos Mensagem (C) Tempo (s)
Cifra (média/var) Decifra (média/var)

101 12 0,0156 / 5 e-6 0,0490 / 6 e-6

101 49 0,0321 / 3,5 e-5 0,0961 / 6 e-6

101 137 0,0802 / 5,7 -4 0,2836 / 5.4 -3
301 12 0,0270 / 0 0,1417 / 6,6 e-5
301 49 0,0414 / 8,4 e-5 0,2013 / 2,8 e-3
301 137 0,0545 / 2 e-6 02744 / 7.2 &5
601 2 0,0864 /33 ¢c5 03186 / 5,2 o-h
601 49 0,0843 / 5 e-6 0,3223 / 6,1 e-5
601 137 0,1077 / 52 -4 0,3919 / 7.2 -3

A Tabela 2 mostra os tempos médios e varidncias de: CSR, encrypt_indices/decrypt_indices;
RSA-2048, rsa_encrypt/rsa_decrypt (OAEP+AES-GCM); ECC-P256, ecc_encrypt/ecc_decrypt
(ECDH+HKDF+AES-GCM).

Tabela 2: Comparativo de desempenho: CSR-601 dig. vs. RSA-2048 vs. ECC-P256 (10 execugoes).

Algoritmo  Mensagem (C) Tempo (s)
Cifra (média/var) Decifra (média/var)
CSR-601 dig. 12 0,0864 /3,35  0,3186 / 5,2 65
49 0,0843 / 5 e-6 0,3223 / 6,1 e-5
137 0,1077 / 5,2 e-4 0,3919 / 7,2 e-3
RSA-2048 12 0,0085 / 1,9 e-5 0,0091 / 5 e-6
49 0,0077 / 5,6 60,0101 / 1,3 e-5
137 0,0068 / 0 0,0086 / 1 e-6
ECC-P256 12 0,0101 /0 0,0078 / 2,8 e-6
49 0,0109 / 2,1 e-6  0,0074 / 0
137 0,0103 /0,2 e-6  0,0079 / 1,9 e-6

Nos testes, medimos apenas os tempos de cifra e decifra, sem incluir geracao de chaves, iniciali-
zagao de bibliotecas ou I/O. Teoricamente, cada operagdo CSR é O(logp), igual ao ECC e melhor
que 0 RSA (O((logp)?)), e inverter % equivale ao DLP em Fj com complexidade L,[1/3,1.923]
para primos de 600 digitos (= 112 bits de segurancga), equiparavel a RSA-2048 e DH-2048.

Também, o CSR pode gerar mascaras M (z,y) por somas modulares e consulta a tabelas tri-
gonomeétricas, o que o torna indicado para criptografia visual, para dispositivos IoT/embarcados
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(ocupando apenas =~ 8 kB de memoria para tabelas) e para ensino de criptografia aplicada, ao
ilustrar simetria rotacional e dlgebra de grupos sem depender de bibliotecas de precisao arbitraria.

4 Consideracoes Finais

O CSR é um esquema baseado em curvas simétricas rotacionais cuja operacgao * € isomorfa a
(Z/(p—1)Z,+) e cuja seguranga se reduz ao DLP em Fj, com esforgo L,[1/3,1.923] em primos de
600 digitos (&~ 112 bits). Em Python, seu tempo de decifragem cresce linearmente de =~ 0,05 s a
~ 0,32 s (101 a 601 digitos), enquanto RSA-2048 e ECC-P256 mantém =0,007-0,010 s, mas com
escalabilidade cibica e constantes maiores, respectivamente.

A implementacao atual carece de otimizagoes de baixo nivel e nao contempla geragao de chaves
ou ataques de canal lateral ou em contexto quéntico, além do algoritmo de Shor, o que seria
corrigido portando modulos criticos para C/GMP (gmpy2).
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