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Criptografia Baseada em Curvas Simétricas Rotacionais
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Resumo. Investigamos a definição de uma estrutura algébrica sobre curvas simétricas rotacio-
nais para criptografia, adaptando o protocolo de ElGamal. Propomos uma operação binária entre
pontos da curva e justificamos matematicamente a escolha dos parâmetros para evitar autointerse-
ções. Implementamos e testamos computacionalmente o método, explorando sua viabilidade como
alternativa às abordagens tradicionais baseadas em RSA e curvas elípticas.
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1 Introdução
A criptografia moderna fundamenta-se na complexidade computacional de problemas matemá-

ticos, sendo utilizados esquemas como RSA e a criptografia baseada em curvas elípticas (ECC) [10,
13]. Além dessas abordagens, propostas alternativas exploram estruturas geométricas e algébricas,
como toros algébricos [11], curvas hiperelípticas [8], curvas de Lissajous [9] e variações de curvas
elípticas como as curvas de Edwards [4], curvas de Hessian [2] e curvas Doche–Icart–Kohel [3].

Neste trabalho, propomos um esquema criptográfico alternativo baseado em curvas simétri-
cas rotacionais (CSR), curvas planares caracterizadas por propriedades geométricas de simetria e
congruências modulares. O sistema proposto utiliza uma operação binária inspirada no esquema
ElGamal [5], diretamente relacionada ao problema do logaritmo discreto no grupo multiplicativo
finito F∗

p. Logo, nossa abordagem herda a segurança de esquemas clássicos, com resistência com-
parável ao RSA-2048 e Diffie-Hellman-2048 frente ao ataque clássico conhecido (NFS-DL) [1, 10].
Assim como os esquemas mencionados, também é vulnerável ao algoritmo quântico de Shor [12].

Além da formulação teórica, validamos a proposta com uma implementação computacional,
demonstrando consistência, desempenho e possível aplicabilidade prática em contextos como crip-
tografia visual, dispositivos com hardware restrito e ensino de matemática aplicada. Os resultados
computacionais confirmam o escalonamento esperado em função de d, e reforçam que, ao elimi-
nar exponenciações em favor de somas modulares e tabelas pré-calculadas, o CSR é atraente em
cenários como IoT, criptografia visual e ensino.

2 Curvas Simétricas Rotacionais e Suas Propriedades
A construção da curva descrita em [7] estabelece sua simetria rotacional. Para M = 3 temos a

“curva misteriosa” e, generalizando essa construção para M rodas no plano complexo, temos

γ(t) =

M∑
j=1

rj exp(iajt), (1)

onde t ∈ [0, 2π), M ≥ 1, rj > 0 são os raios e aj ∈ Z deve satisfazer k ≡ aj (mod m) para k ∈ Z.
A curva γ é periódica com período 2π e, a cada 2π/m, sofre uma rotação de 2kπ/m radianos.
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Teorema 2.1. Se m, k e aj são inteiros tais que k ≡ aj mod m para j = 1, . . . ,M , então, para
todo t ∈ [0, 2π], a curva (1) satisfaz:

γ

(
2π

m
+ t

)
= exp

(
ik

2π

m

)
γ(t). (2)

Como consequência, a seguinte definição caracteriza a simetria rotacional:

Definição 2.1. Uma curva γ possui simetria rotacional de ordem m se existe um inteiro k,
com gcd(m, k) = 1, tal que

γ

(
2π

m
+ t

)
= ∆k 2π

m
γ(t).

Também, a curva pode satisfazer a simetria espelhada, conforme [6]. Em notação matricial,

γ(−t) = ∆2θR0γ(t) = Rθγ(t), (3)
γ(−t) = R0γ(t), (4)

onde

Rθ =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
e ∆θ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (5)

As relações em (3) e (4) decorrem diretamente da multiplicação sucessiva das matrizes ∆θ (rotação)
e Rθ (reflexão), o que torna imediata a demonstração.

Isto é, Rθ representa uma reflexão em torno de uma reta r que passa pela origem com coeficiente
angular θ, e ∆θ é uma rotação anti-horária de ângulo θ em torno da origem.

3 Resultados
Seja γ uma curva com simetria rotacional de ordem m, conforme a Definição 2.1, e considere

t ∈ [0, 2π). Definimos γ|(0,2π/m) como a restrição da curva ao intervalo (0, 2π/m). Mostramos que
essa restrição é suficiente para descrever toda a curva. De fato, para t ∈ (0, 2π/m), utilizando (2) e
a propriedade de composição de rotações ∆θ1∆θ2 = ∆θ1+θ2 , verifica-se que, para j = 1, 2, . . . ,m−1,

γ

(
j
2π

m
+ t

)
= ∆jk 2π

m
γ(t). (6)

Assim, para s ∈ (0, 2π), temos s = j 2π
m + t, com j 2π

m < s < (j + 1) 2πm . Substituindo em (6)

γ(s) = ∆jk 2π
m
γ(t). (7)

Essa relação permite reconstruir γ a partir da sua restrição ao intervalo (0, 2π/m). A seguir,
determinamos condições sob as quais γ pode ser gerada a partir da restrição ao intervalo (0, π/m).

Proposição 3.1. Se m, k e aj são inteiros tais que k ≡ aj mod m para j = 1, . . . ,M , e
gcd(m, k) = 1, então a curva definida em (1) satisfaz, para cada t ∈ [0, 2π) e para todo t ∈ [0, π/m)
com j = 1, . . . , 2m− 1,

γ

(
2π

m
− t

)
= Rk π

m
γ(t) e γ

(
j
π

m
+ t
)
= Rjk π

m
γ
(
j
π

m
− t
)
, (8)

respectivamente.
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Demonstração. Pela equação (4), γ(−t) = R0γ(t), e pelo Teorema 2.1, temos:

γ

(
2π

m
− t

)
= ∆k 2π

m
γ(−t). (9)

Usando ∆2θR0 = Rθ, segue que ∆k 2π
m
R0 = Rk π

m
, e, substituindo em (9), obtemos:

γ

(
2π

m
− t

)
= Rk π

m
γ(t). (10)

Para j = 1 e para j ≥ 2, aplicando a equação anterior em s = π
m − t e aplicando a identidade

R2θRθ = ∆2θ e iterando a relação, segue que

γ
( π

m
+ t
)
= Rk π

m
γ
( π

m
− t
)

e γ
(
j
π

m
+ t
)
= Rjk π

m
γ
(
j
π

m
− t
)
, (11)

respectivamente. Concluímos a demonstração.

Definição 3.1. Uma curva γ é simétrica reflexiva em relação à reta y = tan(jkπ/m)x se, para
cada j = 1, . . . , 2m− 1, a imagem do ponto refletido sobre essa reta pertence à curva. Ou seja,

γ
(
j
π

m
+ t
)
= Rjk π

m
γ
(
j
π

m
− t
)
. (12)

Com base na Proposição 3.1, a curva pode ser gerada iterativamente a partir de reflexões
sucessivas, conforme descrito no Algoritmo 1.
Algoritmo 1: Geração de Curvas Parametrizadas Usando Reflexões
Dados: Constantes M , m e k. Curva parametrizada γ1.
Resultado: γ = γ1 ∪ γ2 ∪ . . . ∪ γ2m−1 ∪ γ2m.

1 γ|[0,π/m) ← γ1
2 para j ← 1 to 2m− 1 faça
3 Defina a reta Lj por y = tan(jk π

m )x;
4 Reflita γj em relação a Lj para obter γj+1;
5 γ|(j π

m ,(j+1) π
m ) ← γj+1

3.1 Construção dos Pontos na Curva
Apresentamos a construção dos pontos Qj usados na cifragem e decifragem de mensagens. Os

pontos Qj são construídos explicitamente a partir dos pontos Pj e Pj+1, distribuídos em torno de
um círculo unitário. A posição desses pontos Pj é derivada das potências de g (mod p),

Pj =

(
cos

(
(gj mod p)

2π

p

)
, sin

(
(gj mod p)

2π

p

))
, (13)

para j mod (p− 1). Com os pontos Pj e Pj+1, o ponto Qj é dado por:

Qj = Pj +
λ

g + 1
(Pj+1 − Pj) , (14)

onde λ ∈ R é um parâmetro que ajusta a posição de Qj ao longo do segmento entre Pj e Pj+1.
A parametrização da curva φ : [0, 2π] 7→ R2 é dada por

φ(t) =

((
1− λ

g + 1

)
cos t+

λ

g + 1
cos(gt),

(
1− λ

g + 1

)
sin t+

λ

g + 1
sin(gt)

)
(15)

onde λ é um parâmetro ajustável. Observamos que, se tj = (gj (mod p))(2π/p), então φ(tj) = Qj .
Dessa maneira, para entender as propriedades deste conjunto de pontos, devemos estudar a curva
φ.
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3.2 Critério para Evitar Autointerseções
Considerando que a curva φ é simétrica reflexiva, a matriz da Definição 3.1 está dada por Rjθ,

onde θ = π/(g− 1). Em particular, para j = 1, os valores próprios são 1 e −1 e os vetores próprios
associados estão gerados por (1, tan(θ)) e (1,− cot(θ)), respectivamente.

Como consequência, possíveis autointerseções devem ocorrer ao longo das direções de simetria
da curva. Além disso, segundo [6], uma CSR é invariante sob reflexão em relação ao eixo x,
garantindo que interseções também devem ocorrer ao longo da reta y = 0.

Proposição 3.2. Se φ : [0, 2π] → R2 é uma curva parametrizada por (15) e θ = π/(g − 1), para
que a curva φ não possua autointerseções, é necessário que λ satisfaça a condição λ ∈ Ig, onde

Ig =

(
−g + 1

g − 1
, 1

)
. (16)

Demonstração. Para evitar autointerseções, analisamos as interseções da curva φ com as retas
y = tan(θ)x e y = 0, onde θ = π/(g − 1). Consideramos t = θ, pois gθ = π + θ implica:

(x(θ), y(θ)) =

((
1− 2λ

g − 1

)
cos(θ),

(
1− 2λ

g − 1

)
sin(θ)

)
, (17)

o que confirma que φ(θ) pertence a y = tan(θ)x.
Outras possíveis interseções são determinadas pelo comportamento da função

λ(t) = (g + 1)
sin t− tan(θ) cos t

sin t− tan(θ) cos t− (sin(gt)− tan(θ) cos(gt))
. (18)

Os valores de t que anulam o denominador são:

tk =
2θ

g + 1
+

(2k + 1)π

g + 1
, tm = −2mθ. (19)

Se g ≥ 3, então tk = θ é o único em (0, 2θ).
Para a reta y = 0, consideramos

λ0(t) = (g + 1)
sin t

sin t− sin(gt)
, (20)

com descontinuidades em tk = ((2k + 1)π)/(g + 1) e tm = −2mθ. No intervalo (−α, α) com
α = π/(g + 1), avaliamos λ0 em t = 0 usando L’Hôpital: λ0(t) se aproxima de −(g + 1)/(g − 1)
quando t tende a 0. Como λ′

0(0) = 0 e λ′′
0(0) < 0, concluímos que t = 0 é um máximo local.

Para λ(θ), obtemos que λ(t) se aproxima de 1 quando t se aproxima de θ.
Com λ′(θ) = 0 e λ′′(θ) ≥ 0, segue que t = θ é um mínimo local. Assim, λ ∈ Ig.

3.3 Definição de uma Estrutura Algébrica sobre os Pontos da Curva
Os pontos Pj podem ser considerados em qualquer círculo de raio R > 0, levando à definição:

P̂j = R

(
cos

(
(gj mod p)

2π

p

)
, sin

(
(gj mod p)

2π

p

))
, (21)

para j mod (p− 1). Definimos o ponto Q̂j como:

Q̂j = P̂j +
λ

g + 1

(
P̂j+1 − P̂j

)
, (22)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0270 010270-4 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0270


5

e a parametrização da curva φ̂ : [0, 2π]→ R2 por φ̂(t) = Rφ(t). Logo, se tj = (gj (mod p))(2π/p),
vale φ̂(tj) = Q̂j , garantindo que as propriedades que evitam autointerseções de φ̂ sejam preservadas.

Para definir uma estrutura algébrica sobre a curva, escolhemos os seguintes parâmetros:

λj = ℓ+
j(u− ℓ)

p− 1
, Rj =

(
1 + cj2 mod p

x
(
tj mod (p−1)

)2
+ y

(
tj mod (p−1)

)2
)1/2

, (23)

onde c ∈ Z∗
p−1, ℓ = −(g+1)(g−1)+ϵ, u = 1−ϵ e ϵ > 0. Também, definimos as operações binárias:

λj ∗ λk = λj+k mod (p−1), Rj ∗Rk = Rj+k mod (p−1). (24)

Finalmente, definimos a operação sobre os pontos Q̂j da curva φ̂ por

Qj ∗Qk = Q(j+k) mod (p−1). (25)

Verificamos que essa estrutura satisfaz as propriedades de um grupo abeliano.

3.4 Método de Cifragem e Decifragem Baseado na Curva
A nossa proposta de criptografia baseada em CSR segue um esquema adaptado do protocolo

de ElGamal, estruturado sobre operações geométricas.

3.4.1 Processo de Cifragem

1. Definição de parâmetros: escolhe-se: um número primo p, define-se um número g mod p,
que pode ser uma raiz primitiva de p; uma chave privada jpriv e uma chave aleatória k.

2. Codificação da mensagem: A mensagem M é representada na base p por meio de

M = qdp
d + nd−1p

d−1 + · · ·+ n1p+ n0, (26)

onde ni são os restos sucessivos da divisão de M por p, e qd é o último quociente obtido.

3. Cálculo dos pontos cifrados: Para cada índice j associado a um coeficiente da mensagem,
calculam-se: o parâmetro angular tj ; o parâmetro de ajuste λj com ϵ = 1/(g − 1); as
coordenadas do ponto Qj = (xj , yj); o fator de escala Rj , com c = gk·jpriv (mod p). Os
pontos cifrados são então obtidos pela transformação:

xenc = Rj+k·jpriv · xj+k·jpriv , yenc = Rj+k·jpriv · yj+k·jpriv . (27)

Um erro associado à cifragem é calculado para verificação na decifragem:

erroenc = x2
enc + y2enc −

(
1 + gk·jpriv(j + k · jpriv)

2 (mod p)
)
. (28)

4. Envio da mensagem cifrada: Para cada índice j, a terna (xenc, yenc, erroenc) é enviada
como mensagem cifrada.

3.4.2 Processo de Decifragem

1. Cálculo do valor j: O valor de j é recuperado resolvendo:

r =
x2

enc + y2enc − (1 + erroenc)

gk·jpriv mod p
mod p, e (j + k · jpriv)

2 = r (mod p). (29)

Logo, a raiz correta é escolhida minimizando o erro entre yj e yenc.

2. Reconstrução da mensagem M : Com os coeficientes j recuperados, a mensagem original
é reconstruída usando (26).
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3.5 Desenvolvimento Computacional e Discussões
Para validar a proposta, implementamos todo o esquema em Python no Google Colab. As

bibliotecas usadas foram mpmath, sympy, secrets e pycryptodome. Os primos p com

p = nextprime(10d − 1) , (30)

foram gerados em célula separada do Colab e não foram incluídos nas medições de desempenho.
Testamos três tamanhos de mensagem: curta (12 C), média (49 C) e longa (137 C), onde C

denota um caractere. Para cada combinação (mensagem, d), executamos 10 repetições da cifra-
gem e da decifragem, coletando média e variância dos tempos de execução das funções puras de
cifra/decifra.

Tabela 1: Tempo de cifragem/decifragem CSR para diferentes dígitos de p (10 execuções).
Dígitos Mensagem (C) Tempo (s)

Cifra (média/var) Decifra (média/var)
101 12 0,0156 / 5 e-6 0,0490 / 6 e-6
101 49 0,0321 / 3,5 e-5 0,0961 / 6 e-6
101 137 0,0892 / 5,7 e-4 0,2836 / 5,4 e-3
301 12 0,0270 / 0 0,1417 / 6,6 e-5
301 49 0,0414 / 8,4 e-5 0,2013 / 2,8 e-3
301 137 0,0545 / 2 e-6 0,2744 / 7,2 e-5
601 12 0,0864 / 3,3 e-5 0,3186 / 5,2 e-5
601 49 0,0843 / 5 e-6 0,3223 / 6,1 e-5
601 137 0,1077 / 5,2 e-4 0,3919 / 7,2 e-3

A Tabela 2 mostra os tempos médios e variâncias de: CSR, encrypt_indices/decrypt_indices;
RSA-2048, rsa_encrypt/rsa_decrypt (OAEP+AES-GCM); ECC-P256, ecc_encrypt/ecc_decrypt
(ECDH+HKDF+AES-GCM).

Tabela 2: Comparativo de desempenho: CSR-601 díg. vs. RSA-2048 vs. ECC-P256 (10 execuções).
Algoritmo Mensagem (C) Tempo (s)

Cifra (média/var) Decifra (média/var)
CSR-601 díg. 12 0,0864 / 3,3 e-5 0,3186 / 5,2 e-5

49 0,0843 / 5 e-6 0,3223 / 6,1 e-5
137 0,1077 / 5,2 e-4 0,3919 / 7,2 e-3

RSA-2048 12 0,0085 / 1,9 e-5 0,0091 / 5 e-6
49 0,0077 / 5,6 e-6 0,0101 / 1,3 e-5
137 0,0068 / 0 0,0086 / 1 e-6

ECC-P256 12 0,0101 / 0 0,0078 / 2,8 e-6
49 0,0109 / 2,1 e-6 0,0074 / 0
137 0,0103 / 0,2 e-6 0,0079 / 1,9 e-6

Nos testes, medimos apenas os tempos de cifra e decifra, sem incluir geração de chaves, iniciali-
zação de bibliotecas ou I/O. Teoricamente, cada operação CSR é O(log p), igual ao ECC e melhor
que o RSA (O((log p)3)), e inverter ⋆ equivale ao DLP em F∗

p com complexidade Lp[1/3, 1.923]
para primos de 600 dígitos (≈ 112 bits de segurança), equiparável a RSA-2048 e DH-2048.

Também, o CSR pode gerar máscaras M(x, y) por somas modulares e consulta a tabelas tri-
gonométricas, o que o torna indicado para criptografia visual, para dispositivos IoT/embarcados
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(ocupando apenas ≈ 8 kB de memória para tabelas) e para ensino de criptografia aplicada, ao
ilustrar simetria rotacional e álgebra de grupos sem depender de bibliotecas de precisão arbitrária.

4 Considerações Finais
O CSR é um esquema baseado em curvas simétricas rotacionais cuja operação ⋆ é isomorfa a

(Z/(p− 1)Z,+) e cuja segurança se reduz ao DLP em F∗
p, com esforço Lp[1/3, 1.923] em primos de

600 dígitos (≈ 112 bits). Em Python, seu tempo de decifragem cresce linearmente de ≈ 0, 05 s a
≈ 0, 32 s (101 a 601 dígitos), enquanto RSA-2048 e ECC-P256 mantêm ≈0,007–0,010 s, mas com
escalabilidade cúbica e constantes maiores, respectivamente.

A implementação atual carece de otimizações de baixo nível e não contempla geração de chaves
ou ataques de canal lateral ou em contexto quântico, além do algoritmo de Shor, o que seria
corrigido portando módulos críticos para C/GMP (gmpy2).
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