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Resumo. Cerâmica é um dos tipos mais comuns de vestígios humanos encontrados em contex-
tos arqueológicos. A análise da cerâmica arqueológica tem grande potencial informativo, e sua
reconstrução é uma tarefa demorada e repetitiva. Neste trabalho, investigamos uma abordagem
baseada em aprendizado profundo para tornar esse processo mais eficiente, preciso e rápido. Dada
uma nuvem de pontos de um fragmento em uma posição padronizada, o método proposto prevê
a transformação geométrica que move o fragmento para sua posição relativa dentro do sistema de
coordenadas do respectivo vaso. Duas redes neurais convolucionais profundas são treinadas para
prever os parâmetros da transformação euclidiana 3D. A primeira rede se dedica a prever os mo-
mentos de translação, e a outra infere os parâmetros de rotação. Em aplicações práticas, uma vez
que a forma de um vaso é identificada, as redes podem ser treinadas para prever os parâmetros
da transformação alvo. Dado um modelo 3D do vaso de interesse, ele é virtualmente quebrado
inúmeras vezes para a produção de dados sintéticos de treinamento, que consistem em um grande
conjunto de fragmentos virtuais.
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1 Introdução
A importância da cerâmica na Arqueologia se dá pelo potencial informativo que ela agrega ao

contexto arqueológico. A análise de cerâmica arqueológica é capaz de localizar o sítio arqueoló-
gico no tempo, bem como determinar sua distribuição espacial, evidenciando a tradição cultural
daquela sociedade, os aspectos socioculturais envolvidos na utilização da cerâmica e as tecnologias
empregadas em sua confecção.

Na restauração da cerâmica arqueológica deve-se, primeiramente, agrupar os fragmentos que
possivelmente pertençam a um mesmo vaso. Em seguida, compara-se os fragmentos um a um,
visando seu encaixe até que todo o vaso seja reconstruído. Todo esse processo é lento, repetitivo e
dependente da expertise do profissional encarregado.

O presente trabalho propõe automatizar e acelerar o processo de reconstrução de cerâmica
arqueológica a partir de seus fragmentos utilizando modelos 3D e redes neurais convolucionais. A
abordagem envolve o treinamento de redes neurais artificiais para qualquer modelo específico de
vaso. Mais especificamente, a nuvem de pontos 3D de um fragmento cerâmico é fornecida como
entrada para o método. O resultado é uma matriz de transformação que posiciona o fragmento em
sua posição esperada.

A arquitetura de rede neural aqui proposta, chamada PotNet [7], é inspirada na arquitetura
PointNet [8]. Os dados de treinamento consistem em um conjunto de nuvens de pontos de frag-
mentos virtuais gerados pela quebra consecutiva de modelos 3D de vasos cerâmicos em ambiente
virtual e são chamados de conjunto de dados sintéticos.
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2 Materiais

A Figura 1 mostra os três vasos cerâmicos reais usados nesse trabalho, denominados Vaso
Grande (VG), Vaso Médio (VM) e Vaso Pequeno (VP). Os vasos foram largados de uma altura de
aproximadamente 1,5 m, totalizando 57, 20 e 21 fragmentos para VG, VM e VP, respectivamente.

Os fragmentos resultantes foram digitalizados por um escâner 3D estereoscópico de luz estru-
turada, o escâner intraoral Virtuo Vivo™. Apesar de ter sido projetado para uso odontológico, ele
se mostrou preciso o suficiente para gerar modelos 3D dos fragmentos.

Figura 1: Vasos VG, VM e VP antes da fragmentação. Fonte: Matheus Pinho (2022)

Figura 2: Modelos 3D dos vasos reconstruídos. Fonte: Matheus Pinho (2023)

Após a digitalização, os fragmentos correspondentes foram virtualmente encaixados usando
o software de modelagem 3D Blender, até que todo o vaso fosse remontado. Após decimação,
as malhas 3D dos fragmentos encaixados precisam ter seus vértices conectados, reproduzindo o
procedimento de colagem de fragmentos no mundo real. Isso faz com que cada vaso seja restaurado
em um único objeto sólido. Os vasos restaurados podem ser vistos na Figura 2 e são a entrada
para a geração dos dados sintéticos utilizados durante o treinamento.

3 Modelagem do Problema

Para modelar o problema, assumimos que os vasos são simétricos em relação a y, permitindo
infinitas posições ao redor desse eixo. Para simplificar, eliminamos o ângulo de rotação relativo a
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y, definindo o chamado “sistema normalizado”4.
As nuvens normalizadas são produzidas rotacionando-se a nuvem de pontos de cada fragmento

em torno do eixo y em sentido horário, movendo os centroides dos fragmentos para o plano yz — o
plano que passa pelos eixos y e z. Os fragmentos em espaço normalizado representam as posições
de referência (ground truth), que devem ser comparadas com as predições das redes.

Além disso, cada fragmento possui um “sistema canônico” absoluto. A nuvem canônica é a
forma padronizada dos fragmentos na entrada do método, garantindo um modelo determinístico e
único para cada fragmento. O centroide do fragmento coincide com a origem do sistema canônico,
e o maior comprimento do paralelepípedo envoltório mínimo do fragmento alinha-se ao eixo x.

A conversão de uma nuvem de pontos para sua forma canônica ocorre em três etapas: cálculo do
paralelepípedo envoltório mínimo, centralização do fragmento na origem e uso da Decomposição
em Valores Singulares (SVD) [5] para projetá-lo no sistema de coordenadas canônico. A SVD
consiste na fatoração de uma matriz retangular A pelo produto de três outras matrizes: uma
matriz ortogonal m × m, U; uma matriz diagonal retangular m × n, Σ; e a transposta de uma
matriz ortogonal n× n, V, conforme a forma:

A = UΣVT (1)

Neste trabalho, A é uma matriz de ordem 8 por 3 contendo as coordenadas dos vértices do
paralelepípedo envoltório mínimo com centroide na origem. A multiplicação AV projeta os vértices
do paralelepípedo na posição canônica.

A Figura 3 apresenta um fragmento arbitrário em suas três diferentes posições: posição original
em relação ao vaso (vermelho), na posição normalizada (azul) e na posição canônica (verde).

Figura 3: O mesmo fragmento em sua posição original, em relação ao sistema de coordenadas do vaso (em
vermelho), na posição normalizada (em azul) e na posição canônica (em verde). Fonte: Matheus Pinho
(2023)

Com as nuvens normalizada e canônica do fragmento, determina-se a transformação entre elas.
A transformação da posição canônica para a normalizada define o target de treinamento y, que
será posteriormente comparado à predição ŷ da PotNet. O algoritmo de Kabsch [1, 6] calcula os
componentes de rotação, minimizando o desvio quadrático médio entre os conjuntos de pontos.

4Adotamos um sistema de coordenadas de mão direita, com y apontando para cima.
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4 Método

A Figura 4 apresenta uma visão geral do método proposto. Dada uma nuvem de pontos X de
um fragmento em seu sistema de coordenadas canônico (Canonical Cloud), o método produz X′,
uma versão dessa nuvem de pontos expressa em termos do sistema de coordenadas (normalizado)
do vaso. Matematicamente, esse processo consiste na aplicação de uma transformação euclidiana
3D no espaço afim, na forma de um operador linear T, onde X′ = X.T. Aqui, X e X′ são matrizes
p × 4, onde p representa o número de pontos em cada nuvem. A matriz T é obtida ao combinar
a matriz de rotação 3 × 3 e o vetor de translação 3 × 1 em uma única matriz de transformação
4×4. Assim, cada coluna dessas matrizes denota um ponto 3D da nuvem, expresso em coordenadas
homogêneas (obtidas pela concatenação do valor 1 após as respectivas coordenadas 3D).

Figura 4: Visão geral do método proposto. Fonte: Guilherme Mota (2024)

A parte fundamental do método consiste em uma arquitetura de rede neural com duas rami-
ficações, ambas prevendo um resultado com base exatamente na mesma entrada X. Rotação e
translação são treinadas de maneira independente. A rede de translação produz na saída os valores
de translação nos eixos y e z, e a rede de rotação produz na saída um vetor 6D correspondente
às duas primeiras colunas da matriz de rotação que leva o fragmento ao espaço de referência. A
matriz de rotação 3×3 completa pode ser recuperada usando-se o processo de Gram-Schmidt [10].
Com o vetor de translação e a matriz de rotação, a matriz de transformação T pode ser obtida.

As partes de rotação e translação da rede neural podem ser de qualquer arquitetura de rede
neural que receba nuvens de pontos como entrada. No entanto, propomos que seja usado como
backbone do método a arquitetura PotNet desenvolvida e apresentada neste trabalho. A PotNet
é uma arquitetura de rede neural dedicada à regressão não linear, cujo design foi inspirado na
PointNet [8]. De maneira geral, a PotNet é composta por várias camadas convolucionais unidi-
mensionais, seguidas por uma camada de max pooling unidimensional global, com o objetivo de
gerar uma série de características para a nuvem de pontos de entrada. Essas características pas-
sam por uma rede multi-layer perceptron (MLP) construída sobre as camadas convolucionais. A
maioria das camadas da PotNet tem funções de ativação ReLU, sendo a única exceção a camada de
saída, que tem ativação linear. Neste trabalho são usadas cinco camadas convolucionais, contendo
respectivamente 64, 64, 64, 128 e 1024 filtros. As camadas MLP ocultas, que utilizam batch nor-
malization, tem 512 e 256 neurônios, enquanto a camada de saída contém N neurônios. O número
de neurônios na camada de saída pode ser 2, caso seja a rede de translação, ou 6, se for de rotação.
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5 Procedimento Experimental
Desenvolvemos um método para produzir automaticamente fragmentos sintéticos usando a

ferramenta Cell Fracture, um recurso nativo do software Blender. Essa ferramenta é baseada em
uma implementação de Diagrama de Voronoi 3D para fragmentação de poliedros [2, 9]. Os modelos
3D dos vasos restaurados VG (ver Figura 2a), VM (Figura 2b) e VP (Figura 2c) são fragmentados
milhares de vezes, e os fragmentos produzidos por esse procedimento compõem o conjunto de dados
sintéticos de treinamento.

Os fragmentos sintéticos são normalizados e posteriormente colocados na posição canônica.
Calcula-se as respectivas matrizes de transformação alvo e, em seguida, aplica-se o filtro de Poisson-
disk sampling [4] do software Meshlab [3] a cada fragmento virtual (já em posição canônica),
amostrando o fragmento em 1.024 pontos. As redes são então treinadas com as nuvens 1024 × 3
em posição canônica e as matrizes de transformação alvo.

6 Resultados e Discussão
A análise desta seção diz respeito à qualidade das previsões ao gerar as matrizes de transfor-

mação T que levam as nuvens canônicas dos fragmentos para o espaço normalizado — a posição
esperada.

Após a predição, cada ponto xi na nuvem canônica é multiplicado pela matriz T correspon-
dente, resultando em x̂′

i, um ponto previsto que deveria coincidir com x′
i, seu homólogo na nuvem

normalizada de referência. As posições preditas dos pontos são comparadas às respectivas posições
normalizadas de referência para calcular os erros relativos. Como as nuvens de pontos predita
e normalizada de um fragmento possuem exatamente os mesmos pontos, o erro exato entre essas
duas nuvens pode ser determinado. Os erros são calculados considerando cada ponto e cada eixo de
coordenadas. A partir das diferenças nas posições de cada ponto, foi computado o Erro Quadrático
Médio (RMSE).

6.1 Resultados Para o Conjunto de Testes Sintético
A Tabela 1 apresenta os valores de RMSE e desvio padrão obtidos para o conjunto de testes

sintético. O erro médio de posicionamento entre as nuvens predita e normalizada dos fragmentos
sintéticos é inferior a 1,8 cm para todos os vasos, o que consideramos pequeno. O desvio padrão
dos erros é inferior a 1 mm, indicando estabilidade dos erros nas predições.

Tabela 1: Métricas de avaliação da PotNet para todo o conjunto sintético de testes de VG, VM e
VP (valores em metros).

RMSE STD

LV 0.025 0.001
MV 0.017 0.0004
SV 0.013 0.0002

6.2 Resultados Para o Conjunto de Testes Real
Aqui, o desempenho das redes treinadas com o conjunto sintético de fragmentos é avaliado com

fragmentos reais, para demonstrar sua aplicabilidade à problemas do mundo real.
O conjunto de testes do mundo real é composto por 57, 20 e 21 fragmentos reais obtidos a

partir da quebra física dos vasos reais VG, VM e VP, respectivamente. Cada fragmento real é
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escaneado em 3D, decimado e amostrado em 1.024 pontos pelo filtro Poisson-disk sampling do
Meshlab, resultando em uma representação em forma de nuvem de pontos. Cada nuvem de pontos
foi posicionada em sua posição canônica e utilizada como entrada para as redes treinadas.

Tabela 2: Métricas de avaliação da PotNet para todo o conjunto de testes real de VG, VM e VP
(valores em metros).

RMSE STD

LV 0.034 0.0006
MV 0.019 0.0002
SV 0.023 0.0003

A Tabela 2 apresenta os erros obtidos para os fragmentos reais de VG, VM e VP. Acreditamos
que os resultados ligeiramente piores para os fragmentos reais ocorrem pois estes tem superfícies
mais irregulares se comparados àqueles gerados por computador, resultando em uma distribuição
de vértices mais complexa nos fragmentos reais, o que torna o aprendizado mais desafiador para a
rede.

Para melhor visualização, fazemos a rotação das nuvens preditas ao redor do eixo y no sentido
anti-horário, trazendo o fragmento do espaço normalizado para o espaço do vaso. Dessa forma,
é possível observar que, de maneira geral, os resultados qualitativos apresentados na Figura 5
mostram que os modelos de rotação e translação aproximam-se dos resultados esperados em um
processo de reconstrução de vasos cerâmicos a partir de seus fragmentos.

Figura 5: Fragmentos do conjunto de testes do mundo real colocados nas posições preditas e rotacionados
em sentido anti-horário pelo inverso da matriz Rφ. Fonte: Matheus Pinho (2024)

7 Conclusão

No presente trabalho, propomos uma abordagem baseada em aprendizado profundo para auxi-
liar na reconstrução de vasos cerâmicos a partir de fragmentos. O método infere a transformação
geométrica que move um modelo 3D de um fragmento da posição canônica para sua posição relativa
no vaso.

Avaliamos o método com três vasos reais, quebrados fisicamente em fragmentos, escaneados
digitalmente e convertidos em nuvens de pontos 3D. Modelos 3D reconstruídos foram quebrados
digitalmente para gerar fragmentos virtuais, usados no treinamento da arquitetura PotNet. Dois
modelos da PotNet foram treinados para cada vaso: um para prever a translação e outro para a
rotação dos fragmentos.
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Nos experimentos, as redes previram corretamente as transformações, com erros médios de
poucos centímetros e desvios padrão milimétricos. A avaliação qualitativa também foi satisfatória.

Para trabalhos futuros, buscamos aprimorar a precisão da PotNet, estender o método para
classificar fragmentos por tipo de vaso e explorar texturas e padrões decorativos para auxiliar na
reconstrução.
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