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Resumo. Ceramica é um dos tipos mais comuns de vestigios humanos encontrados em contex-
tos arqueologicos. A anélise da cerAmica arqueologica tem grande potencial informativo, e sua
reconstrugdo é uma tarefa demorada e repetitiva. Neste trabalho, investigamos uma abordagem
baseada em aprendizado profundo para tornar esse processo mais eficiente, preciso e rapido. Dada
uma nuvem de pontos de um fragmento em uma posigdo padronizada, o método proposto prevé
a transformacgdo geométrica que move o fragmento para sua posig¢do relativa dentro do sistema de
coordenadas do respectivo vaso. Duas redes neurais convolucionais profundas sdo treinadas para
prever os pardmetros da transformagao euclidiana 3D. A primeira rede se dedica a prever os mo-
mentos de translacao, e a outra infere os parametros de rotacdo. Em aplicagoes praticas, uma vez
que a forma de um vaso é identificada, as redes podem ser treinadas para prever os parametros
da transformagado alvo. Dado um modelo 3D do vaso de interesse, ele é virtualmente quebrado
inimeras vezes para a producao de dados sintéticos de treinamento, que consistem em um grande
conjunto de fragmentos virtuais.
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1 Introducao

A importéancia da cerdmica na Arqueologia se da pelo potencial informativo que ela agrega ao
contexto arqueologico. A anélise de ceramica arqueoldgica é capaz de localizar o sitio arqueol6-
gico no tempo, bem como determinar sua distribui¢ao espacial, evidenciando a tradigao cultural
daquela sociedade, os aspectos socioculturais envolvidos na utilizagao da ceramica e as tecnologias
empregadas em sua confecgao.

Na restauracdo da ceramica arqueoldgica deve-se, primeiramente, agrupar os fragmentos que
possivelmente pertengam a um mesmo vaso. Em seguida, compara-se os fragmentos um a um,
visando seu encaixe até que todo o vaso seja reconstruido. Todo esse processo é lento, repetitivo e
dependente da expertise do profissional encarregado.

O presente trabalho propoe automatizar e acelerar o processo de reconstrugao de ceramica
arqueoldgica a partir de seus fragmentos utilizando modelos 3D e redes neurais convolucionais. A
abordagem envolve o treinamento de redes neurais artificiais para qualquer modelo especifico de
vaso. Mais especificamente, a nuvem de pontos 3D de um fragmento cerdmico é fornecida como
entrada para o método. O resultado é uma matriz de transformagao que posiciona o fragmento em
sua posicao esperada.

A arquitetura de rede neural aqui proposta, chamada PotNet [7], é inspirada na arquitetura
PointNet [8]. Os dados de treinamento consistem em um conjunto de nuvens de pontos de frag-
mentos virtuais gerados pela quebra consecutiva de modelos 3D de vasos cerdmicos em ambiente
virtual e sao chamados de conjunto de dados sintéticos.
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2 Materiais

A Figura 1 mostra os trés vasos ceramicos reais usados nesse trabalho, denominados Vaso
Grande (VG), Vaso Médio (VM) e Vaso Pequeno (VP). Os vasos foram largados de uma altura de
aproximadamente 1,5 m, totalizando 57, 20 e 21 fragmentos para VG, VM e VP, respectivamente.

Os fragmentos resultantes foram digitalizados por um escéner 3D estereoscopico de luz estru-
turada, o escaner intraoral Virtuo Vivo . Apesar de ter sido projetado para uso odontologico, ele
se mostrou preciso o suficiente para gerar modelos 3D dos fragmentos.

Matheus Pinho (2022)

Figura 2: Modelos 3D dos vasos reconstruidos. Fonte: Matheus Pinho (2023)

Apoés a digitalizacdo, os fragmentos correspondentes foram virtualmente encaixados usando
o software de modelagem 3D Blender, até que todo o vaso fosse remontado. Apds decimagao,
as malhas 3D dos fragmentos encaixados precisam ter seus vértices conectados, reproduzindo o
procedimento de colagem de fragmentos no mundo real. Isso faz com que cada vaso seja restaurado
em um unico objeto solido. Os vasos restaurados podem ser vistos na Figura 2 e sao a entrada
para a geragao dos dados sintéticos utilizados durante o treinamento.

3 Modelagem do Problema

Para modelar o problema, assumimos que os vasos sao simétricos em relagao a y, permitindo
infinitas posi¢oes ao redor desse eixo. Para simplificar, eliminamos o dngulo de rotagdo relativo a
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y, definindo o chamado “sistema normalizado™.

As nuvens normalizadas sdo produzidas rotacionando-se a nuvem de pontos de cada fragmento
em torno do eixo y em sentido horario, movendo os centroides dos fragmentos para o plano yz — o
plano que passa pelos eixos y e z. Os fragmentos em espago normalizado representam as posigoes
de referéncia (ground truth), que devem ser comparadas com as predi¢oes das redes.

Além disso, cada fragmento possui um “sistema canonico” absoluto. A nuvem canénica é a
forma padronizada dos fragmentos na entrada do método, garantindo um modelo deterministico e
dnico para cada fragmento. O centroide do fragmento coincide com a origem do sistema candnico,
e o0 maior comprimento do paralelepipedo envoltorio minimo do fragmento alinha-se ao eixo x.

A conversao de uma nuvem de pontos para sua forma candnica ocorre em trés etapas: céalculo do
paralelepipedo envoltorio minimo, centralizagao do fragmento na origem e uso da Decomposigao
em Valores Singulares (SVD) [5] para projeta-lo no sistema de coordenadas canonico. A SVD
consiste na fatoragao de uma matriz retangular A pelo produto de trés outras matrizes: uma
matriz ortogonal m x m, U; uma matriz diagonal retangular m x n, 3; e a transposta de uma
matriz ortogonal n x n, V, conforme a forma:

A =UxVvT (1)

Neste trabalho, A é uma matriz de ordem 8 por 3 contendo as coordenadas dos vértices do
paralelepipedo envoltério minimo com centroide na origem. A multiplicagao AV projeta os vértices
do paralelepipedo na posi¢ao candnica.

A Figura 3 apresenta um fragmento arbitrario em suas trés diferentes posi¢oes: posic¢ao original
em relagdo ao vaso (vermelho), na posigdo normalizada (azul) e na posigdo canonica (verde).

ﬂy

1 X

z

Figura 3: O mesmo fragmento em sua posigao original, em relagio ao sistema de coordenadas do vaso (em
vermelho), na posi¢ao normalizada (em azul) e na posigdo canodnica (em verde). Fonte: Matheus Pinho
(2023)

Com as nuvens normalizada e canénica do fragmento, determina-se a transformacao entre elas.
A transformacgao da posicdo canodnica para a normalizada define o target de treinamento y, que
sera posteriormente comparado & predigdo ¥ da PotNet. O algoritmo de Kabsch [1, 6] calcula os
componentes de rotacao, minimizando o desvio quadratico médio entre os conjuntos de pontos.

4 Adotamos um sistema de coordenadas de méo direita, com y apontando para cima.

DOI: 10.5540/03.2026.012.01.0345 010345-3 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0345

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

4 Meétodo

A Figura 4 apresenta uma visao geral do método proposto. Dada uma nuvem de pontos X de
um fragmento em seu sistema de coordenadas canodnico (Canonical Cloud), o método produz X/,
uma versao dessa nuvem de pontos expressa em termos do sistema de coordenadas (normalizado)
do vaso. Matematicamente, esse processo consiste na aplicagdo de uma transformacao euclidiana
3D no espaco afim, na forma de um operador linear T, onde X’ = X.T. Aqui, X e X’ sdo matrizes
p X 4, onde p representa o numero de pontos em cada nuvem. A matriz T é obtida ao combinar
a matriz de rotagdo 3 x 3 e o vetor de translagao 3 x 1 em uma tdnica matriz de transformacao
4x4. Assim, cada coluna dessas matrizes denota um ponto 3D da nuvem, expresso em coordenadas
homogeéneas (obtidas pela concatenagao do valor 1 apos as respectivas coordenadas 3D).

. PotNet
Canonical

cma/ Translation \ ~
X y

\ PotNet /

Rotation

Normalized
Cloud

X.T=X

Euclidean
Transformation

Figura 4: Visao geral do método proposto. Fonte: Guilherme Mota (2024)

A parte fundamental do método consiste em uma arquitetura de rede neural com duas rami-
ficagoes, ambas prevendo um resultado com base exatamente na mesma entrada X. Rotagao e
translacao sao treinadas de maneira independente. A rede de translacao produz na saida os valores
de translagao nos eixos y e z, e a rede de rotacao produz na saida um vetor 6D correspondente
as duas primeiras colunas da matriz de rotagdo que leva o fragmento ao espago de referéncia. A
matriz de rotagdo 3 x 3 completa pode ser recuperada usando-se o processo de Gram-Schmidt [10].
Com o vetor de translacao e a matriz de rotagao, a matriz de transformacao T pode ser obtida.

As partes de rotacio e translagio da rede neural podem ser de qualquer arquitetura de rede
neural que receba nuvens de pontos como entrada. No entanto, propomos que seja usado como
backbone do método a arquitetura PotNet desenvolvida e apresentada neste trabalho. A PotNet
é uma arquitetura de rede neural dedicada & regressao nao linear, cujo design foi inspirado na
PointNet [8]. De maneira geral, a PotNet é composta por varias camadas convolucionais unidi-
mensionais, seguidas por uma camada de maz pooling unidimensional global, com o objetivo de
gerar uma série de caracteristicas para a nuvem de pontos de entrada. Essas caracteristicas pas-
sam por uma rede multi-layer perceptron (MLP) construida sobre as camadas convolucionais. A
maioria das camadas da PotNet tem fungoes de ativagdo ReLU, sendo a tinica excecao a camada de
saida, que tem ativacao linear. Neste trabalho sao usadas cinco camadas convolucionais, contendo
respectivamente 64, 64, 64, 128 e 1024 filtros. As camadas MLP ocultas, que utilizam batch nor-
malization, tem 512 e 256 neurdnios, enquanto a camada de saida contém N neurdnios. O niimero
de neurénios na camada de saida pode ser 2, caso seja a rede de translagao, ou 6, se for de rotacao.
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5 Procedimento Experimental

Desenvolvemos um método para produzir automaticamente fragmentos sintéticos usando a
ferramenta Cell Fracture, um recurso nativo do software Blender. Essa ferramenta é baseada em
uma implementagio de Diagrama de Voronoi 3D para fragmentacao de poliedros |2, 9]. Os modelos
3D dos vasos restaurados VG (ver Figura 2a), VM (Figura 2b) e VP (Figura 2¢) sao fragmentados
milhares de vezes, e os fragmentos produzidos por esse procedimento compoem o conjunto de dados
sintéticos de treinamento.

Os fragmentos sintéticos sao normalizados e posteriormente colocados na posi¢ao canonica.
Calcula-se as respectivas matrizes de transformagao alvo e, em seguida, aplica-se o filtro de Poisson-
disk sampling [4] do software Meshlab [3] a cada fragmento virtual (j4 em posigdo canonica),
amostrando o fragmento em 1.024 pontos. As redes sao entao treinadas com as nuvens 1024 x 3
em posicao candnica e as matrizes de transformacao alvo.

6 Resultados e Discussao

A analise desta seg@o diz respeito a qualidade das previsoes ao gerar as matrizes de transfor-
macao T que levam as nuvens candnicas dos fragmentos para o espago normalizado — a posigao
esperada.

Apés a predicdo, cada ponto x; na nuvem canoénica é multiplicado pela matriz T correspon-
dente, resultando em X}, um ponto previsto que deveria coincidir com x}, seu homologo na nuvem
normalizada de referéncia. As posicoes preditas dos pontos sdo comparadas as respectivas posigoes
normalizadas de referéncia para calcular os erros relativos. Como as nuvens de pontos predita
e normalizada de um fragmento possuem exatamente os mesmos pontos, o erro exato entre essas
duas nuvens pode ser determinado. Os erros sao calculados considerando cada ponto e cada eixo de
coordenadas. A partir das diferencas nas posi¢oes de cada ponto, foi computado o Erro Quadratico
Meédio (RMSE).

6.1 Resultados Para o Conjunto de Testes Sintético

A Tabela 1 apresenta os valores de RMSE e desvio padrao obtidos para o conjunto de testes
sintético. O erro médio de posicionamento entre as nuvens predita e normalizada dos fragmentos
sintéticos é inferior a 1,8 cm para todos os vasos, o que consideramos pequeno. O desvio padrao
dos erros é inferior a 1 mm, indicando estabilidade dos erros nas predicoes.

Tabela 1: Métricas de avaliagdo da PotNet para todo o conjunto sintético de testes de VG, VM e
VP (valores em metros).

RMSE STD

Lv  0.025 0.001
MV  0.017  0.0004
SV 0.013  0.0002

6.2 Resultados Para o Conjunto de Testes Real

Aqui, o desempenho das redes treinadas com o conjunto sintético de fragmentos é avaliado com
fragmentos reais, para demonstrar sua aplicabilidade & problemas do mundo real.

O conjunto de testes do mundo real é composto por 57, 20 e 21 fragmentos reais obtidos a
partir da quebra fisica dos vasos reais VG, VM e VP, respectivamente. Cada fragmento real é
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escaneado em 3D, decimado e amostrado em 1.024 pontos pelo filtro Poisson-disk sampling do
Meshlab, resultando em uma representa¢ao em forma de nuvem de pontos. Cada nuvem de pontos
foi posicionada em sua posi¢ao canodnica e utilizada como entrada para as redes treinadas.

Tabela 2: Métricas de avaliagao da PotNet para todo o conjunto de testes real de VG, VM e VP
(valores em metros).

RMSE STD

LV 0.034 0.0006
MV  0.019 0.0002
SV 0.023 0.0003

A Tabela 2 apresenta os erros obtidos para os fragmentos reais de VG, VM e VP. Acreditamos
que os resultados ligeiramente piores para os fragmentos reais ocorrem pois estes tem superficies
mais irregulares se comparados aqueles gerados por computador, resultando em uma distribuigao
de vértices mais complexa nos fragmentos reais, o que torna o aprendizado mais desafiador para a
rede.

Para melhor visualizacao, fazemos a rotacao das nuvens preditas ao redor do eixo y no sentido
anti-horario, trazendo o fragmento do espago normalizado para o espaco do vaso. Dessa forma,
é possivel observar que, de maneira geral, os resultados qualitativos apresentados na Figura 5
mostram que os modelos de rotacao e translacao aproximam-se dos resultados esperados em um
processo de reconstrucdo de vasos ceramicos a partir de seus fragmentos.

Figura 5: Fragmentos do conjunto de testes do mundo real colocados nas posigoes preditas e rotacionados
em sentido anti-horério pelo inverso da matriz R,. Fonte: Matheus Pinho (2024)

7 Conclusao

No presente trabalho, propomos uma abordagem baseada em aprendizado profundo para auxi-
liar na reconstrugao de vasos ceramicos a partir de fragmentos. O método infere a transformagao
geométrica que move um modelo 3D de um fragmento da posicao canénica para sua posicao relativa
no vaso.

Avaliamos o método com trés vasos reais, quebrados fisicamente em fragmentos, escaneados
digitalmente e convertidos em nuvens de pontos 3D. Modelos 3D reconstruidos foram quebrados
digitalmente para gerar fragmentos virtuais, usados no treinamento da arquitetura PotNet. Dois
modelos da PotNet foram treinados para cada vaso: um para prever a translagao e outro para a
rotagdo dos fragmentos.
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Nos experimentos, as redes previram corretamente as transformagoes, com erros médios de

poucos centimetros e desvios padrao milimétricos. A avaliacdo qualitativa também foi satisfatoria.

Para trabalhos futuros, buscamos aprimorar a precisdo da PotNet, estender o método para

classificar fragmentos por tipo de vaso e explorar texturas e padroes decorativos para auxiliar na
reconstrugao.
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