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Resumo. Este trabalho estuda numericamente a influéncia da adsor¢ao de surfactante em escoa-
mentos bifasicos liquido-gés em meios porosos heterogéneos. Neste contexto, um modelo de espuma
em equilibrio local é adotado e a espuma é tratada como um fluido ndo-Newtoniano. Incluindo
os efeitos do surfactante na fase liquida e levando em conta os efeitos de adsorgao cinética e em
equilibrio do surfactante, uma formulagao de fluxo fracionério baseada na pressao global é utilizada,
resultando em um sistema que acopla o problema de Darcy com as equagoes do transporte para as
saturagoes de fluido e concentragao de surfactante. Essas equagbes sdo divididas em dois subsis-
temas que sdo resolvidos por um algoritmo numérico sequencial que combina um método hibrido
de elementos finitos para aproximar o sistema de Darcy com um método de volumes finitos de
alta ordem para encontrar as saturagoes de fluido e concentragdo de surfactante. Um método de
diferencgas finitas implicitas é adotado para a discretizacao no tempo e os problemas hidrodindmico
e hiperbdlico sao resolvidos usando um algoritmo escalonado em diferentes escalas de tempo. Os
resultados numéricos mostram o impacto negativo dos efeitos de adsorgao na eficiéncia de varredura
do géas em escoamentos bifdsicos em meios porosos heterogéneos.

Palavras-chave. Surfactante, Adsor¢ao, Espuma, Métodos mistos hibridos, Métodos de volumes
finitos, Meios porosos heterogéneos.

1 Introducao

As técnicas de recuperagao avangada de petréleo (Enhanced Oil Recovery — EOR), desenvol-
vidas para melhorar a producao de petréleo, sao caracterizadas pela injecao de materiais que
normalmente nao estao presentes no reservatorio. Os métodos de EOR podem ser especialmente
ateis quando algum gés é injetado no reservatorio, pois a eficiéncia de varredura do gas pode ser
limitada pelo fenomeno de segregacao gravitacional e pelo fingering viscoso [8]. O uso de espuma
para controlar a mobilidade do géas é uma técnica de EOR eficaz que pode reduzir as limitagoes
anteriormente citadas [8].

A espuma em meios porosos pode ser definida como uma dispersao de um géas em um liquido,
de modo que a fase liquida seja continua e a fase gasosa seja descontinua . Para que a espuma
seja gerada, a tensao superficial entre as fases liquida e gasosa deve ser suficientemente baixa. Os
surfactantes sdo substancias capazes de reduzir a tensao superficial [8]. Assim, esta técnica de EOR
consiste em injetar surfactante em solucdo aquosa para reduzir a tensao interfacial, induzindo a
formacao de espuma na fase gasosa e, consequentemente, a redugao da mobilidade do géas.
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Ao injetar uma solugao de surfactante em um meio poroso, surge um efeito importante: a adsor-
cao. Este fendbmeno é um processo no qual a massa de surfactante dissolvido na fase liquida adere e
se acumula na superficie de um so6lido [2]. Uma consequéncia desse fenémeno é a redugéo da quan-
tidade de surfactante disponivel na fase liquida para geracao de espuma, afetando diretamente a
eficacia da espuma no escoamento em meios porosos. A adsorcao pode impactar significativamente
nos custos e na eficiéncia dos processos de inundagao quimica, ditando a viabilidade econémica
dessa técnica [11]. Na modelagem é levado em conta a adsor¢do em equilibrio e a cinética. O
caso em equilibrio é caracterizado pelo balanco entre as quantidades de surfactante adsorvido e na
solugdo. Na adsorcdo cinética, a taxa de adsorcao e dessorcao do surfactante é descrita ao longo
do tempo.

Visando o uso de espuma, uma técnica de inje¢do em meios porosos que se destaca [16] é a
injegao alternada de gas e surfactante, conhecida como SAG (surfactant alternating gas). No SAG,
a espuma é formada quando o géas injetado encontra a solucao de surfactante previamente injetado
e quando a solugao de surfactante encontra o géas previamente injetado. Por outro lado, quando
o surfactante nao é adicionado a solucao aquosa, a técnica de injegao alternada recebe o nome de
WAG (water alternating gas).

Em relagao & modelagem matemaética da injegao de espuma em meios porosos, o modelo ado-
tado consiste em acoplar a lei de Darcy com as equagoes de conservagao de massa para as fases,
combinada com a equacao de transporte de surfactante como um componente dissolvido na solugao
aquosa. Para simular o modelo matematico é adotada a metodologia numérica e computacional
desenvolvida em [6, 7, 14]. A hidrodinamica é resolvida por um método de elementos finitos mistos
hibrido localmente conservativo que aproxima simultaneamente os campos de velocidade e pres-
sao. Um esquema de volumes finitos central e upwind é aplicado as equagoes hiperbélicas para
encontrar aproximacoes para as saturacoes de fluido e a concentracio de surfactante. Finalmente,
apo6s a discretizagdo no espago, o sistema resultante é integrado no tempo usando o esquema im-
plicito BDF (Backward Differentiation Formula). Os problemas hidrodinAmicos e hiperbolicos sao
resolvidos usando um algoritmo escalonado em diferentes escalas de tempo [5-7, 14].

Neste contexto, usando a metodologia numérica proposta para o modelo bifasico incluindo
efeitos de espuma e surfactante, estudamos a influéncia da adsorcao no deslocamento de espuma
em meios porosos heterogéneos utilizando a técnica de injegdo SAG. Os resultados numéricos,
comparando cenérios com e sem adsor¢ao, comprovam o impacto negativo da adsorc¢ao na eficiéncia
de varredura do gés e consequentemente na curva de produgao da solugao aquosa.

2 Modelagem Matematica e Numérica

O modelo matemético assume um meio poroso rigido totalmente saturado, fases incompressiveis
e efeitos térmicos e gravitacionais despreziveis. Definindo o dominio espacial Q C R?, 0 = 2 ou 3,
com contorno de Lipschitz I' = 92, e o intervalo de tempo (0,7], apresentamos o sistema que
descreve o escoamento imiscivel das fases dgua e gds em um meio poroso, incluindo efeitos de
espuma e surfactante [6, 7, 14]

u=—-kAVp e¢ V-u=0, (1)
S OA L0 (fu)
¢E+(1—¢)pﬁ+; o TV (CVS) =2, 2)
. dc«kin
kin __ _ s
w—s T (1 (b)p dt ’ (3)

onde ¢ denota a diregao espacial. Definimos ¢ como a porosidade do meio, ug denota a velocidade
superficial da fase § (com 3 = g para a fase gasosa e § = w para a fase aquosa), com u = »_ug, p
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é a pressao global [4, 5], p = ps/pw € a densidade adimensional, com p; sendo a densidade da rocha
e pw sendo a densidade da agua, CX™ ¢é a concentracio de surfactante adsorvido por mecanismo
cinético e fXi" ¢ a taxa liquida de transferéncia de massa do meio aquoso para a fase solida via
adsorgdo (cinética). Os termos Ay = Ky /fiyw € Ag = kig/ ,ug denotam a mobilidade das fases agua
e gas, e A = Ay + Az denota a mobilidade total, onde a viscosidade da agua, a viscosidade do gas
na presenca de espuma e a permeabilidade relativa da dgua e do gas sao dadas por fiy, ug, krw €

kyg, respectivamente. Além disso, k = k(x) é a permeabilidade absoluta isotrépica e

— SW _ 0 _ fW o O _ ch o 1 0
i R R e B I 0 B L R

onde Sy ¢é a saturacao da fase 3, Cy é a concentracao de surfactante na dgua, C$ é a concentragao
do surfactante adsorvido nos locais de equilibrio no meio poroso, fi, = Aw/A é a fungao de fluxo
fracionario da agua e P, é a pressao capilar. Os termos C9 e fki" sio definidos usando o modelo
de Langmuir [13], como segue:

»
eq _ ﬂ kin _ LHCS - Ky (Okin (5)
s 1 _’_Kgqcsa wW—s 1 +K§(mOS esYs
onde K}, K54, K" e KX sio parametros empiricos e Kges ¢ a taxa de dessorgao.

Os efeitos ndo-Newtonianos da espuma séo incluidos no sistema (1)-(3) através da definicdo da
viscosidade efetiva do gas [10]

f = — p—
Hg = pg + |vg\% np, onde np %] I
0, P. > P,

3/2
e Vi

onde np = Nf/Nmax € Nmax referem-se a textura de espuma normalizada e & textura de espuma
de referéncia méaxima, respectivamente, v, = ug/(¢Ss) é a velocidade intersticial do gés, p, € a
viscosidade do gés na auséncia de espuma, o ¢ uma constante empirica, ( = v/12a®> +81 +9 e
2
k_1|ve|3nm, . . ..
a= |k0g|mdx, sendo vy, = uy/(¢Sy) a velocidade intersticial da 4gua.
v
1 w
As permeabilidades relativas da dgua e do gas e a pressao capilar sao definidas por [3]

Su— 8 " 1— Sy —Su ) o/ 002 \°
b = by | T frg = KOy | — 25 P, = \/> — 7
”V(l—swc—sgr> e = e\ 75 s, ) TV k\s,—015) @
com o denotando a tensao da interface gas-liquido, considerada constante.

2.1 Metodologia Numérica

O algoritmo sequencial proposto por [6, 7, 14] é usado para resolver (1)-(3). O problema é
desacoplado em dois subproblemas: um conjunto de equagoes descrevendo a hidrodinamica (1),
com o passo de tempo At,, e um sistema de equagdes descrevendo o transporte (2), com o passo
de tempo Aty < At,. Neste contexto, sdo adotados métodos numeéricos especificos para cada
subproblema. As equagoes da hidrodinAmica (1) sdo aproximadas usando um método de elementos
finitos mistos hibridos naturalmente estavel introduzido por Raviart e Thomas em [15] e o sistema
de transporte (2) é resolvido usando um esquema central-upwind de volumes finitos conservativo,
de alta ordem, com difuséo numeérica reduzida, proposto por Kurganov, Noelle e Petrova (KNP) em
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Figura 1: Campo de permeabilidade da camada 36 do projeto SPE10. Fonte: Preparado pelo
autor.

[12]. O algoritmo para resolver o problema de hidrodinamica foi implementado usando a biblioteca
deal.II [1], enquanto que para a integracao do tempo nas equagdes de transporte foi adotada a
implementacao do esquema BDF do pacote CVODE, disponivel na biblioteca SUNDIALS [9]. A
combinagao dessas abordagens deu origem ao simulador interno, denominado FOSSIL, validado a
partir da reprodugéo de diversos resultados analiticos e experimentais [6, 7, 14].

3 Resultados Numeéricos

Nesta se¢ao, usando a metodologia numérica e computacional apresentada na Secao 2.1, estuda-
mos a influéncia da adsorgao de surfactante no escoamento bifasico em meios porosos heterogéneos.
Adotando a técnica de injegao SAG, na qual apos a injecao de solugao de surfactante somente gas
é injetado, e a camada 36 do 102 projeto SPE (ver Fig. 1), as simulagoes sao realizadas por 50.000
segundos em um dominio bidimensional medindo 3,67 x 1,0 m, com uma malha de 220 x 60 células.
O meio é pré-saturado com agua e a solugdo aquosa injetada contém surfactante na concentragao
1,0 wt.%. Os demais parametros estao descritos na Tabela 1.

Tabela 1: Parametros de simulagdo adaptados de [3, 7, 14].

Parametro Valor Parametro Valor
Viscosidade da agua (i) [Pa s] 1,0 -10~3 | Permeabilidade [mD] 300
Viscosidade do gas (ug) [Pa s 1,8-107° | kY [sY/3m~13/3] 1,65 - 10
Saturagao residual de dgua (Syc) 0,38 | k2, [m™!] 10,0
Saturagao residual do gas (Sgy) 0,0 | Ppax [Pa] 3,0-10%
Maximo kyy (K2,) 10 | K[ 0,1
Maximo kypy (kY,) 0,7 | K54 [wt.% 1 4,0
Expoente para kg (ng) 3| Kaes [s7Y 2,0-1074
Expoente para kyy (Ny) 3 | a [Pas?3m!/3) 7,4-10718
Max. foam texture (nmax) [m =3 1,0-10'2 | Oy de referéncia (Cr°f) [wt.%)] 0,083
Velocidade de injecdo (i) [m s7!] 1,41-1075 | Tensao de interface (o) |[N/m] 0,033
Cs de injecao [wt.%)| 1,0 | K¥n [s71 3,5-1073
Saturacdo de agua inicial (S9) 1,0 | KX [wt. %1 100
Porosidade (¢) 0,18 | Densidade adimensional (p) 2,4

Os resultados para a concentragao de surfactante na fase aquosa, textura de espuma e saturagao
de agua sao mostrados, respectivamente, nas Figuras 2, 3 e 4. A penetracao do surfactante no meio
poroso, especialmente na regiao de alta permeabilidade, é maior no caso sem adsorcao, como pode
ser visto na Figura 2. O fenémeno de adsorcao reduz a concentragao de surfactante na fase aquosa,
0 que impacta diretamente na eficacia da espuma, conforme modelado em (6). Mais diretamente,
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Figura 2: Concentragio de surfactante na fase aquosa (Cs) em ¢ = 25.000s (esquerda) e ¢ = 45.000s
(direita), para os casos com adsor¢do (em cima) e sem adsorgao (embaixo). Fonte: Preparado pelo autor.

Textura de Espuma
0.0 0.2 0.4 0.6 0.8 1.0

Figura 3: Textura de espuma (np) em ¢ = 25.000s (esquerda) e ¢t = 45.000s (direita), para os casos com
adsorgao de surfactante (em cima) e sem adsor¢ao de surfactante (embaixo). Fonte: Preparado pelo autor.

Saturagdo de Agua
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Figura 4: Saturagdo de agua (Sw) em ¢ = 25.000s (esquerda) e ¢ = 45.000s (direita), para os casos com
adsor¢ao de surfactante (em cima) e sem adsorgao de surfactante (embaixo). Fonte: Preparado pelo autor.
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Figura 5: Produgdo cumulativa de dgua para SAG (com e sem adsor¢iao) e WAG (sem espuma). Fonte:
Preparado pelo autor.

a textura da espuma é afetada pela concentracao do surfactante, pois a geracdo de espuma é
mais proeminente no experimento numérico sem adsorcao (Fig. 3). Por fim, as caracteristicas do
escoamento de espuma anteriores resultam em uma redugao da mobilidade do gas, levando a um
melhor deslocamento da fase aquosa quando a adsorgao nao é contabilizada (ver Figura 4).

Na Figura 5, a producdo cumulativa de dgua para as simulagbes usando SAG (com e sem
adsorcao) pode ser observada juntamente com os resultados para a estratégia de injecaio WAG, que
néo inclui efeitos de espuma. A simulagao sem adsorc¢ao gera maior producdo de 4gua, enquanto a
curva de producao de adsorgao fica muito proxima da curva WAG devido & perda de surfactante
para a matriz sélida do meio poroso.

4 Conclusoes

A metodologia numeérica proposta para resolver o modelo matemético que inclui fenémenos de
adsorc¢ao cinética e em equilibrio mostrou-se robusta, estével e capaz de simular cenarios complexos
em meios porosos heterogéneos. Os resultados numeéricos evidenciaram que o fenémeno de adsorgao
pode influenciar diretamente no escoamento de espuma em meios porosos, reduzindo a quantidade
de surfactante na fase aquosa e, consequentemente, afetando a geracdo de espuma. Para mitigar o
efeito de adsorgao, a solugao de surfactante pode ser pré-injetada no meio poroso, permitindo que
a adsor¢ao ocorra apenas no estagio de pré-injecao [3]. No entanto, o surfactante ainda é perdido
para a matriz solida do meio, ainda impactando os custos de operagao. Outra forma de reduzir
os efeitos da adsorcao é escolher um tipo de surfactante apropriado, considerando a quimica da
superficie da rocha e a estrutura do surfactante, de forma que a atracgao fisico-quimica que leva &
adsorgao seja reduzida [11].
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