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Resumo. Este trabalho tem por objetivo apresentar a área de Física Solar, em especial o fenômeno
de explosões solares, como oportuna para pesquisas futuras envolvendo aprendizado de máquina.
Ocorre que extensos conjuntos de dados dessa área estão disponíveis e a produção científica brasileira
recente é de 1,88% ante à mundial, abaixo da porcentagem vista em outras áreas. Para tanto, o
artigo contém descrições sobre o fenômeno físico, incluindo suas classificações e referências de fontes
de dados. Também apresenta conceitos de aprendizado de máquina e trabalhos recentes envolvendo
as duas áreas. Por fim, discute levantamento de produção científica e instituições nacionais nessa
linha de pesquisa, visando facilitar interações entre atuais e novos pesquisadores.
Palavras-chave. Aprendizado de Máquina, Atividade Solar, Clima Espacial, Explosões Solares,
Periódicos CAPES.

1 Introdução
O Aprendizado de Máquina tornou-se essencial na era do big data. A Astrofísica, Física Solar

e Clima Espacial são áreas propícias para sua aplicação. Nessas áreas, dados in situ e remotos
vêm sendo coletados ao longo de décadas por missões espaciais e terrestres, produzindo extensos
conjuntos de dados livremente disponíveis [3]. Haja vista que seus estudos dependem de observações
cujas condições experimentais não podem ser alteradas, apenas observadas [1].

Fenômenos como explosões solares (solar flares) e ejeção coronal de massa (coronal mass ejec-
tion, CME) podem parecer distantes, mas suas consequências danificam satélites e afetam tecno-
logias terrestres [17]. Prevenir-se para eventos perigosos como o “Evento Starlink ” e em “Quebec
1989” [7], torna-se crucial para a manutenção da sociedade tecnológica contemporânea [1]. Nesse
contexto, a Figura 1 traz observações de uma explosão solar pelo satélite SDO (Solar Dynamics
Observatory), além de uma concepção artística do plasma solar colidindo com o campo geomag-
nético.

A aplicação de técnicas de aprendizado de máquina tem grande potencial de melhoria no enten-
dimento em Física Solar [1]. Além disso, pesquisas nessa área com enfoque nacional mostram-se
estratégicas. Sendo assim, este artigo revisa conceitos de aprendizado de máquina e explosões
solares, além de analisar a produção científica recente de pesquisadores em instituições brasileiras.
Espera-se, portanto, incentivar novas pesquisas e formação de recursos humanos nessa linha.
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a) b)

Figura 1: a) Composição de observações de uma explosão solar. b) Representação artística de plasma
solar colidindo com o campo magnético da Terra. Fonte: adaptado de [17].

2 Explosões Solares

Explosões solares são fenômenos energéticos que causam aumento de radiação, particularmente
em comprimentos de onda curtos, sendo considerados o início para muitos fenômenos e impactos
no Clima Espacial [9]. Esses eventos resultam da liberação e dissipação de energia magnética na
atmosfera do Sol, com aumento da intensidade da radiação no espectro eletromagnético [6]. Espe-
cificamente, entende-se que a reconexão magnética seja o mecanismo de liberação dessa energia [9].
Segundo Priest e Forbes [14], na reconexão ocorrem quebras nas linhas de força magnética, con-
forme representado nas Figuras 2a e 2b. Essa quebra provoca que parte do plasma seja ejetada
para fora do Sol e outra parte volte para sua superfície. O primeiro movimento corresponde à CME
(Figura 2c) e o plasma magnetizado é levado pelo vento solar ao meio interplanetário, tornando-se
ICME (interplanetary coronal mass ejection) [16].

Figura 2: Evolução do comportamento das linhas de campo magnético de regiões ativas do Sol em
duas fases (a,b) tendendo à reconexão magnética e representação de explosões solares com características
observacionais (c). Fonte: adaptado de [14].

Dependendo da orientação das linhas de campo no plasma solar na ICME, pode haver interação
com o campo magnético terrestre, ocasionando reconexão magnética nos polos e na cauda. Nesse
caso, similar ao representado na Figura 1b, o plasma na ICME se expande no meio interplanetário
e, se direcionado à Terra, pode interagir com o campo geomagnético, causando precipitação de
partículas, tempestades geomagnéticas, auroras e outros fenômenos [7, 17]. Enquanto a radiação
emitida numa explosão solar leva cerca de 8 minutos para chegar à Terra, as ICMEs levam cerca
de 2 ∼ 3 dias. Tem-se aqui, nessa escala de tempo, uma justificativa para estudar explosões solares
como previsão de ICME e eventos extremos [4].
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O excesso de radiação emitido por explosões solares é detectado por diversos telescópios e
sensores, como XRS (X-ray sensor), nas bandas de 1-8 Å e 0,5-4 Å, em satélites como GOES (Ge-
ostationary Operational Environmental Satellite) e registrado em imagens obtidas pelo telescópio
SDO [13]. Esse telescópio obtém intensidades de comprimentos de onda invisíveis ao olho nu, sendo
cada comprimento convertido em cor visível. Exemplos dessas estão na Figura 1a, correspondentes
aos comprimentos de onda 131, 171, 193 e 304 Å registrados às 16:46 UTC de 14/05/2024. Além
da radiação, o campo magnético solar também é inferido por diversos satélites e sua magnitude é
registrada em imagens HMI (Helioseismic and Magnetic Imager) do SDO. Enquanto os parâmetros
das regiões ativas são calculados a partir das componentes do campo, resultando nas séries tempo-
rais SHARP (Space-Weather HMI Active Region Patches) [2]. Explosões solares são classificadas
de acordo com o máximo de emissão do fluxo (em W/m2) de raios X na banda 1-8 Å do GOES.
Os eventos são classificados em A, B, C, M e X seguindo uma escala logarítmica de 10−7W/m2

a 10−4W/m2. Por exemplo, um caso com fluxo máximo em 3, 1× 10−5W/m2 é classificado como
M3.1. Note-se que esta classificação não considera a duração dos eventos e, tampouco, a energia
total irradiada pelas explosões.

Figura 3: a) Raio X nos dias 01-03/02/2025 pelo GOES, com intensidades do fluxo em raios X no eixo à
esquerda e a classe à direita. b) Magnetograma HMI/SDO do dia 03/02/2025. Fonte: [5].

Na Figura 3a tem-se um exemplo de observação de raio X pelo GOES. No canal 1-8 Å (linha
verde) um pico corresponde ao instante de máximo de um evento, para fins de catálogo. Neste
período ocorreram diversos eventos C e 11 eventos M, sendo o mais intenso em 03/02/2025, às 4:00
UTC. Em diferentes comprimentos de onda, o instante de emissão máxima não necessariamente
coincide com o momento de máximo em raios X. Em tempos de máxima atividade do ciclo solar,
como é o caso da Figura 3, o valor médio de raio X (1-8 Å) está em classe C; enquanto em tempos
de mínima, o valor médio fica em torno de classes A ou B, devido à presença de regiões ativas na
atmosfera solar, associadas às manchas solares e à atividade magnética do Sol. A propósito, cada
região ativa corresponde aos pares de manchas em branco e preto no HMI, como na Figura 3b.

Pelas características descritas, além da construção de modelos físicos, estudos de identificação
de regiões ativas e predição de explosões solares são bastante importantes. Asensio Ramos [1]
realizou uma revisão recente de trabalhos que aplicam aprendizado de máquina neste contexto.
Em geral, os trabalhos combinam dados do HMI e parâmetros SHARP [2] para realizar predições
utilizando modelos como análise de componentes principais (PCA), k−médias, máquina de vetores
de suporte (SVM) e k−vizinhos mais próximos (KNN). Enquanto, redes neurais e redes neurais
profundas ainda são pouco exploradas, assim como imagens em diferentes comprimentos de onda.
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3 Aprendizado de Máquina
Conceitos como inteligência artificial e aprendizado de máquina remontam aos anos 1940 com

a ideia de neurônio artificial [11] e o processo de aprendizado humano por repetição. Ou seja,
realizar uma ação e repeti-la com alguma modificação até que o objetivo seja atingido com algum
grau de acerto e o indivíduo seja considerado treinado.

Um neurônio artificial pode ser visto como uma variável real aplicada em operações pré-definidas
quando conectado a outro. O conjunto de neurônios e conexões constitui as redes neurais artificiais.
Apesar de individualmente simples, o conjunto massivo de neurônios e conexões permite à rede
modelar fenômenos complexos [1]. A Figura 4a representa um bloco de construção de uma rede
totalmente conectada, considerando um vetor x⃗ = (x1, ..., x7) (com 7 neurônios) na camada L− 1
e um vetor y⃗ = (y1, ..., y5) (com 5 neurônios) na camada L. Cada estado yi é calculado usando os
estados xj dos neurônios da camada anterior por uma função de ativação f como na Equação 1

yi = f(x⃗ · w⃗ + bi), (1)

onde θ(L) = (w⃗, b⃗) compõe os parâmetros (pesos e vieses) da camada L.

Figura 4: Comparação de a) blocos de construção de rede neural totalmente conectada e b) rede neural
convolucional. Fonte: adaptado de [1] e [8].

Em um fluxo (pipeline) completo, um ou mais blocos, como da Figura 4a, são combinados com
uma entrada e uma saída. A quantidade de camadas determina a profundidade da rede, enquanto
a repetição do fluxo consiste no treinamento. Em cada rodada de repetição completa (época), os
parâmetros θ são ajustados a fim de otimizar uma função de perda. Essa última advém do erro
entre a saída obtida e a desejada (se aprendizado supervisionado), da métrica de estabilidade (se
aprendizado não supervisionado) ou da regra de pontuação (se aprendizado por reforço).

A ampliação do número de camadas leva à solução de problemas cada vez mais complexos.
Porém, isso pode causar inviabilidade computacional devido ao crescimento do número de operações
e parâmetros. Uma solução é a arquitetura de rede neural convolucional (CNN) [8], na qual o bloco
da Figura 4a é reorganizado para o da Figura 4b. No caso, a camada L − 1 torna-se um cubo
(tensor) de dimensão C × N × N ; os parâmetros θ estão em M núcleos (kernel) de dimensão
C ×K ×K (K < N); os neurônios da camada L resultam em um cubo de tamanho N ×N ×M ;
e a operação produto escalar da Equação 1 é substituída pela convolução [1].

Vê-se que um cubo com C = 1 é uma matriz, enquanto para C > 1 o cubo é um conjunto
de C matrizes (canais) de dimensão N ×N . Essa nomenclatura é ligada às imagens digitais, mas
entradas de séries temporais ou outros dados em uma dimensão também podem ser reorganizados
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em matrizes ou cubos. Isso porque as CNNs são invariantes ao deslocamento (shift), detectando
características independentemente do posicionamento dos dados [1]. Outra vantagem da CNN é
que pode-se ter M = 1 e K muito menores que N , reduzindo (muito) a dimensionalidade e o número
de operações. Isso ocorre porque os pesos são compartilhados entre os neurônios de uma camada
e não mais em cada conexão. Agora, as incógnitas a serem otimizadas são os núcleos, remetendo
aos filtros convolucionais no contexto de processamento de imagens [12]. Para o entendimento do
processo de treinamento e atualização dos pesos, pode-se construir um modelo Perceptron [15] que
reproduza aplicações de portas lógicas como AND, OR e NOT.

4 Panorama da Produção Científica Brasileira

A fim de traçar um panorama da pesquisa brasileira nesta área, realizou-se um levantamento
de artigos publicados e de projetos com fomento aprovado. Primeiramente, utilizou-se os portais
Periódicos CAPES6, e Web of Science7, considerando o ano de publicação após 2010. Para destacar
a produção nacional, o Periódicos CAPES oferece um filtro automático, enquanto no Web of Science
verificou-se a afiliação dos autores. As palavras-chave e respectivas quantidades categorizadas
constam na Tabela 1.

Tabela 1: Quantidades de artigos após o ano 2010. Cada recorte de produção nacional está indicado entre
parênteses. Fonte: Periódicos CAPES e Web of Science (WoS).

Periódicos CAPES
Palavras-chave Revisados Não Revisados WoS

solar flare, machine learning 921 (13) 92 (7) 192 (5)
solar flare, neural network 83 (2) 16 (3) 150 (3)
solar flare, deep learning 80 (2) 7 (2) 120 (3)

solar flare, machine learning, neural network 60 (0) 12 (1) 52 (0)
solar flare, machine learning, deep learning 59 (1) 5 (1) 54 (2)

explosões solares 3 (3) 4 (4) –

A partir da Tabela 1, vê-se que a produção nacional aproxima-se de 1,88% dos artigos revisados
por pares, sendo que há cenários com apenas um ou nenhum trabalho nacional. Essa porcentagem
é abaixo do índice de participação brasileira na ciência mundial, que foi de 2,78% em 2021 e
2,46% em 2022 [10]. Os cenários com menos trabalhos nacionais são aqueles que envolvem redes
neurais (neural network) e aprendizado profundo (deep learning), o que motiva a redação deste
artigo. Duas particularidades dos Periódicos CAPES são a possibilidade de localizar trabalhos em
português e trabalhos não revisados (em geral, de eventos). Ainda que esses trabalhos possam
parecer menos relevantes, são úteis para estudos iniciais.

Além disso, foi realizada a análise dos autores e filiações nos 16 artigos distintos identificados
como revisados por pares e de produção nacional no levantamento via Periódicos CAPES. Nessas
publicações, há 57 autores distintos, sendo 37 (65%) com filiação em instituição nacional. A quan-
tidade de artigos ao longo do tempo consta na Figura 5a, que traz ainda recortes de trabalhos com
filiações internacionais e nacionais (vermelho), nacionais distintas (verde) e apenas uma instituição
nacional (azul). As quantidades de autores por instituição nacional constam na Figura 5b.

Com relação à Figura 5a, vê-se o aumento de publicações com autoria de uma única instituição
ao longo dos anos. Além disso, pode-se observar a influência das restrições da pandemia de Covid-

6http://www.periodicos.capes.gov.br/, acessado em 07/03/2025
7http://webofscience.com/, acessado em 07/03/2025
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a) b)

Figura 5: Quantidades de a) produção nacional após o ano 2010 e b) de autores por instituição. Fonte:
do autor a partir de levantamento no Periódicos CAPES.

19 (2020 e 2021), que provocaram zero publicações em 2022 e 2023. Mesma hipótese que justifica
a queda na produção nacional de modo geral, em 2022 ante 2021 [10].

Já a Figura 5b indica quais instituições nacionais possuem pesquisadores nessa área, com desta-
que para Mackenzie, UNICAMP, UFRGS e INPE. Os agradecimentos das 16 publicações nacionais
analisadas indicam a origem de fomentos, como CAPES (bolsa de estudos), CNPq (universal e
bolsa produtividade), Fapergs, Fapesp e Mackpesquisa, além de algumas agências internacionais.
Ampliando essa busca, foram localizados projetos usando a palavra-chave “explosão solar” na Bibli-
oteca Virtual da FAPESP8. Nesse tema, identificaram-se sete projetos de auxílio à pesquisa regular
com vigência a partir de 2002 e finalização mais recente em 2020. Desses, 5 foram sediados no
Mackenzie, enquanto os outros 2 foram sediados no INPE e na UNIVAP. Atualmente, não há pro-
jeto em vigência na Fapesp. Enquanto o CNPq e a CAPES não disponibilizam dados de projetos
financiados de modo equivalente aos da Fapesp, que permitam um levantamento mais amplo.

5 Considerações Finais
Este trabalho apresentou uma revisão bibliográfica sobre o fenômeno explosões solares e o apren-

dizado de máquina, com destaque para fontes de dados e referências importantes para consultas
futuras. Além disso, realizou-se um levantamento em Periódicos CAPES e Web of Science a fim de
traçar um panorama das publicações nacionais envolvendo esses temas. Os resultados demonstram
quais instituições nacionais possuem experiência e oportunidades de pesquisa nesta área. Observa-
se ainda que a produção nacional sobre o tema é baixa e há necessidade de ações para a ampliação e
diversificação de financiamento, a fim de fomentar a formação de novos recursos humanos nacionais
nesta linha de pesquisa. Incentivos a novos pesquisadores e ações de internacionalização também
são bem-vindos para aprimorar o número de publicações em parceria com autores de instituições
internacionais. Bem como, ampliar levantamentos envolvendo outras instituições de fomento e
áreas correlatas pode melhorar o direcionamento dessas estratégias. Espera-se, assim, incentivar
novas pesquisas e a formação de recursos humanos, combinando essas linhas de pesquisa.
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