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Resumo. Este trabalho apresenta uma análise do potencial térmico do solo na região de Rivera,
Uruguai, com base em dados de temperatura do ar na superfície e do solo a 2 metros de pro-
fundidade, coletados entre julho de 2023 e abril de 2024. A modelagem matemática foi realizada
utilizando ajustes trigonométricos e polinomiais para avaliar a eficácia desses modelos na repre-
sentação das variações térmicas sazonais. O potencial térmico, definido como a diferença entre a
temperatura do solo e do ar, foi calculado ao longo do ano. Os resultados indicam que ajustes tri-
gonométricos representam melhor as variações diárias, enquanto ajustes polinomiais de grau 4 têm
melhor desempenho em dias atípicos. No inverno, o potencial térmico é maior, favorecendo sistemas
de aquecimento, enquanto no verão, embora menor, ainda pode ser aproveitado para resfriamento.
Essas descobertas contribuem para o planejamento de soluções térmicas mais eficientes na região.
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1 Introdução

A busca por fontes de energia renováveis tem se intensificado nas últimas décadas, impulsionada
pela necessidade de mitigar os impactos das mudanças climáticas e promover a sustentabilidade.
Nesse contexto, a energia geotérmica superficial emerge como uma solução promissora, devido à sua
abundância e capacidade de fornecer aquecimento e resfriamento de forma eficiente e sustentável
[5]. Essa fonte energética é renovável e possui o potencial de suprir parte significativa das demandas
energéticas de edificações, reduzindo a dependência de combustíveis fósseis e contribuindo para a
transição rumo à neutralidade de carbono [8].
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Apesar dessas vantagens, a implementação eficaz de sistemas térmicos do solo enfrenta desafios,
especialmente no que diz respeito à modelagem térmica. A previsão das temperaturas do ar e do
solo que é útil para dimensionar o projeto de Trocadores de Calor Solo-Ar (TCSA), sistemas que
utilizam a inércia térmica do solo para climatização passiva. Modelos matemáticos adequados
permitem não apenas compreender o comportamento térmico do solo em diferentes condições,
mas também otimizar o desempenho desses sistemas, minimizando impactos ambientais e custos
operacionais [1, 3]. Nesse sentido, a estimativa do potencial térmico do solo é relevante para
quantificar a capacidade de troca energética do solo.

Diante desse cenário, este estudo tem como objetivo comparar a eficácia de diferentes modelos
matemáticos na representação de dados experimentais de temperatura do solo e do ar na cidade de
Rivera, Uruguai, associando-os à avaliação do potencial térmico do solo no local. Em particular, se-
rão analisados modelos baseados em funções polinomiais e trigonométricas, visando identificar qual
abordagem proporciona maior precisão na modelagem geotérmica superficial. Os dados analisados
foram obtidos por meio de uma parceria com a Universidad Tecnológica del Uruguay (UTEC) de
Rivera, que mantém um sistema de monitoramento remoto local das temperaturas do solo [6].

A escolha por essa região deve-se ao seu elevado potencial térmico, conforme demonstrado por
estudos recentes [8], tornando a pesquisa relevante tanto para a comunidade científica quanto para
aplicações práticas no setor energético. A integração entre modelagem geotérmica superficial e
estimativa de potencial do solo ao longo do ano permitirá uma avaliação da viabilidade operaci-
onal dos TCSA na localidade. Espera-se que os resultados obtidos contribuam para o avanço do
conhecimento na área, fornecendo subsídios para o desenvolvimento de estratégias mais eficientes
de climatização sustentável.

2 Metodologia

Este estudo tem como objetivo comparar diferentes métodos de modelagem matemática para a
representação das variações térmicas diárias do ar e estimar o potencial térmico do solo na cidade de
Rivera, Uruguai. Para isso, utilizou-se uma abordagem baseada na análise de dados experimentais
coletados ao longo de dez meses, combinada com técnicas de interpolação polinomial e ajuste de
curvas trigonométricas.

Os dados experimentais utilizados neste estudo foram obtidos em parceria com a Universidad
Tecnológica del Uruguay (UTEC), por meio de um sistema de monitoramento contínuo das tem-
peraturas do solo e do ar. O período de coleta compreende de julho de 2023 a abril de 2024, e os
sensores foram instalados em diferentes profundidades do solo, permitindo a análise da distribui-
ção térmica ao longo do tempo. A partir desses dados, foi possível calcular o potencial térmico do
solo, definido como a diferença entre a temperatura do solo (Tsolo) e a temperatura da superfície
(Tsuperfície), ou seja:

Potencial = Tsolo − Tsuperfície. (1)

As medições de temperatura foram feitas por conjuntos de sensores instalados a diferentes
profundidades. Em particular, este trabalho foca em uma amostra da pesquisa, relativa a três
dispositivos enterrados a 2 metros de profundidade e um na superfície. O uso de múltiplos dis-
positivos teve o objetivo de garantir redundância e confiabilidade nos dados. A base de dados,
composta por 6.056 registros ao longo de dez meses, passou por pré-tratamento para remover valo-
res nulos e inconsistentes, garantindo a qualidade das previsões. Foram calculadas médias horárias
das medições e comparados os valores registrados. Quando a diferença entre os dispositivos não
ultrapassava 1o C, a média de todos os três era calculada. Se um dos dispositivos apresentava um
valor discrepante, a média era calculada com base em dois. Quando os três apresentavam valores
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díspares, a medição era considerada inválida. A partir dessas informações, construiu-se um banco
de dados detalhado para a modelagem matemática das variações térmicas do solo [6, 8].

A modelagem matemática das temperaturas do ar foi conduzida utilizando dois métodos prin-
cipais:

• Ajuste polinomial: técnica que permite representar os dados coletados por meio de poli-
nômios de graus n (Equação (2)) ajustados diretamente sobre os pontos experimentais:

pn(t) = a0 + a1t+ ...+ ant
n. (2)

• Ajuste trigonométrico: método que utiliza funções senoidais (Equação (3)) para repre-
sentar as oscilações periódicas da temperatura ao longo do tempo [4]:

pt(t) = a0 sen

(
2π

T0
t+ a1

)
+ a2, (3)

onde T0 é o período, t é o tempo e a0, . . . , an são coeficientes reais à determinar.
Para determinar os coeficientes das funções ajustadas, utilizou-se o método dos mínimos qua-

drados, que minimiza a soma dos erros quadráticos entre os valores observados e os preditos pelo
modelo. A função objetivo é dada por:

Erro2 =

n∑
i=1

[p(ti)− Ti]
2, (4)

onde Ti são os valores reais, p(ti) são os valores estimados e n é o número de observações. Esse
método é amplamente utilizado em ajustes de curvas [2, 4].

No caso de ajuste trigonométrico, a minimização da Equação (3), conduz a um sistema não
linear que é resolvido usando o Método de Newton (ver a referência [4] para mais detalhes).

A avaliação dos modelos foi realizada utilizando métricas estatísticas, incluindo o erro quadrá-
tico médio (MSE, do inglês Mean Squared Error), definido como:

MSE =
1

n

n∑
i=1

(Treal,i − Tmodelada,i)
2, (5)

onde Treal,i são os valores experimentais e Tmodelo,i são os valores estimados pelos modelos.
Também foi analisada a correlação de Pearson, que mede o grau de relacionamento linear entre

as variáveis. Valores próximos de 1 indicam forte correlação positiva, enquanto valores próximos de
−1 indicam forte correlação negativa e quando 0 sem relação linear entre as variáveis. A correlação
é calculada por:

ρ =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
, (6)

onde xi e yi são os valores das variáveis, e x̄ e ȳ são suas médias.
Os cálculos e análises foram realizados utilizando a linguagem de programação Python, por

meio das bibliotecas NumPy e SciPy para cálculos matemáticos e estatísticos. E Matplotlib para
geração de gráficos e visualização dos dados. Essas ferramentas foram utilizadas para processar os
dados coletados, aplicar os modelos matemáticos e comparar os resultados obtidos [7].

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0329 010329-3 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0329


4

3 Resultados

Os resultados da modelagem matemática das temperaturas da superfície e do solo a 2 metros
de profundidade, no período de julho/2023 a abril/2024, foram analisados com base em dados
coletados em meses e dias específicos. Logo, este estudo foca em períodos de 24 horas (T0).
Para garantir uma amostragem representativa, o dia 20 foi sorteado aleatoriamente entre 1 e 30
para coleta. Os meses escolhidos para apresentação dos resultados foram julho, dezembro e abril,
representando, respectivamente, o inverno, o verão e o outono na região estudada. As medições
do potencial térmico do solo, calculado como a diferença entre a temperatura do solo a 2 metros e
a temperatura da superfície, foram realizadas nos mesmos meses e dias, garantindo consistência e
minimizando viés de seleção.

Os resultados do dia 20/07/2023, o modelo trigonométrico p4(t) = −4,8 sen
(

π
12 t− 12,02

)
+

12,07 obteve o menor erro quadrático médio (MSE = 0,80) e maior correlação (ρ = 0,97), superando
os modelos polinomiais de terceiro e quarto graus, que tiveram MSE de 1,40 e 0,82, respectivamente.
A Figura 1 mostra o potencial térmico, com valores máximos de 11,03 ◦C (aquecimento).

Figura 1: Potencial térmico 20/07/2023. Fonte: do autor.

No dia 20/12/2023 os resultados mostram que o modelo polinomial de quarto grau p4(t) =
19,11− 1,28x+ 0,29x2 − 0,02x3 + 0,01x4 obteve o menor erro quadrático médio (MSE = 0,16) e a
maior correlação (ρ = 0,98), superando os modelos trigonométrico e polinomial de terceiro grau,
que tiveram MSE de 0,69 e 0,42, respectivamente. Na Figura 2 mostra o potencial térmico, com
valores máximos de 4,8 ◦C (aquecimento) durante a madrugada e um potencial de resfriamento de
−0,7o C próximo ao meio-dia. Esse foi um dia atípico onde as temperaturas se mantiveram quase
contantes, durante longos períodos.
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Figura 2: Potencial térmico 20/12/2023. Fonte: do autor.

E nos resultados do dia 20/04/2024, o modelo trigonométrico pt(t) = 4,9 sen
(

π
12 t− 14,91

)
+

15,43 obteve o menor erro quadrático médio (MSE = 1,24) e maior correlação (ρ = 0,95), superando
os modelos polinomiais (MSE = 1,42 e 1,37). A Figura 3 mostra o potencial térmico, com valores
máximos de 9,3 ◦C (aquecimento).

Figura 3: Potencial térmico 20/12/2023. Fonte: do autor.

Em resumo, foi observado um potencial térmico da ordem de 11o C para aquecimento e −1o C
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para resfriamento, indicando que o solo mantém uma temperatura mais alta que a superfície.
No verão (dezembro), o potencial térmico foi da ordem de 5o C para aquecimento e 0,6o C para
resfriamento. No outono (abril), observou-se novamente um potencial térmico da ordem de 10o C
para aquecimento e −0,8o C para resfriamento, indicando que o solo começa a armazenar calor
novamente, mostrando um resultado próximo ao do mês de Julho.

4 Considerações Finais
Considerando os resultados obtidos, a modelagem matemática das temperaturas da superfície

e do solo a 2 metros de profundidade revelou variações sazonais claras no potencial térmico do solo
entre julho de 2023 e abril de 2024. O cálculo do potencial térmico, definido pela diferença entre
a temperatura do solo e a da superfície, indicou um desempenho superior no inverno, com valores
máximos de 10o C para aquecimento e −1o C para resfriamento no dia 20 de julho de 2023. Em
dezembro, os valores de potencial térmico foram menores, com 5o C para aquecimento e −0,6o C
para resfriamento. Já no outono (abril), o potencial térmico foi de 9,3o C para aquecimento e
0,8o C para resfriamento.

Os modelos matemáticos aplicados para estimar as variações de temperatura apresentaram
desempenhos variados: o modelo trigonométrico foi o mais eficaz em julho (MSE = 0,80, ρ =
0,97), enquanto o modelo polinomial de quarto grau se destacou em dezembro (MSE = 0,16, ρ =
0,98). Para abril, o modelo trigonométrico novamente obteve o melhor desempenho (MSE =
1,24, ρ = 0,95). Esses resultados destacam as capacidades do solo para suportar sistemas térmicos
de aquecimento e resfriamento ao longo do ano, com maior eficiência no inverno.

Essas variações sazonais no potencial térmico do solo reforçam a viabilidade de sistemas de
troca de calor solo-ar (TCSA) como solução eficiente para o controle térmico de edificações em
Rivera.
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