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Abstract. A variety of applications related to engineering and physics can be mathematically
modeled by Partial Differential Equations, such as Poisson’s equation with Dirichlet or Neumann
boundary conditions. This study focuses on the application of Moving Least Squares (MLS) interpo-
lation within matrix-based Finite Difference schemes to approximate the two-dimensional Poisson’s
equation on adaptive Cartesian grids or Adaptive Mesh Refinement in specific regions using Matlab.
Communication between cells at different refinement levels is typically done using Lagrange inter-
polation methods; however, this paper investigates and discusses the benefits of MLS interpolation
on the proposed approach.
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1 Introduction
Partial Differential Equations, such as Poisson’s equation, model numerous physical phenom-

ena. However, analytical solutions to these problems are often unattainable and require the use
of numerical methods such as Finite Differences (FD), Finite Volumes, or Finite Elements [4, 10].
Although FD is widely used, due to its practicality, stability conditions can make the uniform
domain discretization infeasible and may be inefficient for problems with localized solution con-
straints. Consequently, using an uniform domain discretization to approximate these solutions
may not be ideal, as it could result in low accuracy or be computationally expensive. Therefore,
the importance of considering Adaptive Mesh Refinement (AMR). There are various techniques
for generating static or dynamic AMR, such as composite meshes formed by a set of rectangular
blocks with nesting constraints as described in [1]. Also in [2], are presented meshes that subdivide
rectangular cells into four finer-level cells by bisecting their horizontal and vertical dimensions,
forming the Adaptive Cartesian Grids (ACG) which are used in this research. Sometimes these
meshes are also called Quadtree [10]. Other approaches include hierarchical grid that also al-
low Cartesian discretizations, as detailed in [8]. Furthermore, [7] includes the application of FD
discretization within AMR in matrix format, allowing the utilization of numerical linear algebra
libraries. Recently, theoretical results for the approximation of elliptic equations with matrix-based
FD schemes have been studied in [3].
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Effective ACG implementation requires robust level cell communication, for which interpolation
methods, including Lagrange [1, 7] and Moving Least Squares (MLS) [8] interpolations, are crucial.
MLS interpolation is also used in the formulation of meshfree schemes [9]. We have illustrated the
capabilities of our approach using this method by simulating numerically the approximation for
Poisson’s equation in a robust variety of complex meshes. Furthermore, efficient data structures,
such as Hash Tables, are essential for managing AMR meshes [2, 6]. This research explores FD
discretization on ACG using matrix formulations, comparing Lagrange and MLS interpolations for
cell communication in a block-structured, it is a necessary requirement to Lagrange interpolation.
Simulations are also performed with MLS on general ACG without losing the second order of
convergence. Hash Table data structure are used for mesh management. Finally, without sacrificing
accuracy, we have explored different ways to select the cloud of points to MLS, based on points
and cells and we have performed a numerical simulation to explore the effectivity of the selection.
We have included a numerical error analysis with the order of approximation of the method to
evaluate the efficiency of MLS. Moreover, we have included a sparse matrix analysis based on the
condition number. All implementations are conducted using Matlab.

2 Domain Discretization
We are interested to approximate a Poisson equation of the form

−∇2φ(x, y) = −
(
∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2

)
= f(x, y), (1)

with Dirichlet or Neumann boundary conditions and (x, y) ∈ Ω = [a1, a2] × [b1, b2] ⊂ R2. The
uniform discretization divides the domain at n and m partitions on the x and y axes, where
∆x = (a2 − a1)/n and ∆y = (b2 − b1)/m. A point (xi, yj) at the center of the cell has coordinates
xi = x0 + (i + 1

2 )∆x and yj = y0 + (j + 1
2 )∆y with x0 = a1 and y0 = b1. Thus, the second order

five points FD method to approximate (1) is given by

−
φi,j−1

∆y2
−

φi−1,j

∆x2
+ 2

(
1

∆x2
+

1

∆y2

)
φi,j −

φi+1,j

∆x2
−

φi,j+1

∆y2
= f i,j . (2)

The stencil varies according to cells positions. If the cell (i, j) is in the boundary it is necessary to
approximate it, maintaining the second order approximation. For instance, a cell with index (i, 0)
(in the inferior boundary) in the Dirichlet case, is given by, φi,−1 = 2αi −φi,0 +O

(
∆y2

)
, where

φi,−1 = φ
(
xi, y0 − ∆y

2

)
and αi = φ (xi, y0). The stencil using (2), including a cell (i,−1) is

−
φi−1,0

∆x2
+

(
2

∆x2
+

3

∆y2

)
φi,0 −

φi+1,0

∆x2
−

φi,1

∆y2
= f i,0 +

2

∆y2
αi.

Analogously, to Neumann boundary condition, with βi = φy

(
xi +

∆x
2 , y0

)
we have used φi,−1 =

φi,0 −∆yβi +O
(
∆y3

)
. In this case, the stencil with the five points FD (2) change to

−
φi−1,0

∆x
+

(
2

∆x2
+

1

∆y2

)
φi,0 −

φi+1,0

∆x2
−

φi,1

∆y2
= f i,0 −

1

∆y
βi.

Then, by calculating the stencil for each mesh point and considering the boundary conditions, we
get a system of equations Aφ = F , where F is the right-hand side of known values. The sequence
in which mesh points are approximated varies with the enumeration or order of routing the cells,
which also changes the resulting sparsity pattern of the matrix within the FD. Figure 1 illustrates
some enumeration patterns for the uniform mesh case, more details in [5].
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(a) Lexicographical order. (b) Down-Up order. (c) Aleatory order.

Figure 1: Space filling curves. Source: own creation.

To illustrate the matrix creation with the lexicographical order and the Dirichlet boundary con-
ditions, we define the variables a1 = −3

(
1

∆x2 + 1
∆y2

)
, a2 = −

(
2

∆x2 + 3
∆y2

)
, a3 = −

(
3

∆x2 + 2
∆y2

)
,

a4 = −2
(

1
∆x2 + 1

∆y2

)
, b = 1

∆x2 and c = 1
∆y2 . Then, are created the n× n block matrices Ti and

the m×m auxiliary matrices Di, given by

T1 =



a1 b · · · · · · 0

b a2

. . . · · · 0

0
. . .

. . .
. . .

...
... · · ·

. . . a2 b
0 · · · · · · b a1


, T2 =



a3 b · · · · · · 0

b a4

. . . · · · 0

0
. . .

. . .
. . .

...
... · · ·

. . . a4 b
0 · · · · · · b a3


, T3 =



c 0 · · · · · · 0

0 c
. . . · · · 0

0
. . .

. . .
. . .

...
... · · ·

. . . c 0
0 · · · · · · 0 c


,

D1 =



1 0 · · · · · · 0

0 0
. . . · · ·

...
...

. . .
. . .

. . .
...

... · · ·
. . . 0 0

0 · · · · · · 0 1


, D2 =



0 0 · · · · · · 0

0 1
. . . · · ·

...
...

. . .
. . .

. . .
...

... · · ·
. . . 1 0

0 · · · · · · 0 0


, and D3 =



0 1 0 · · · 0

1 0
. . . · · · 0

0
. . .

. . .
. . .

...
... · · ·

. . . 0 1
0 · · · 0 1 0


.

Finally, using the Kronecker product we obtain the matrix of coefficients to be solved

A = − (D1 ⊗ T1 +D2 ⊗ T2 +D3 ⊗ T3) .

It is important to highlight that the sparsity structure of the matrix is defined by the enumeration.
Now, we extend the methodology of the AMR approach to Cartesian domains. The refinement

process starts from a uniform mesh, where each cell, selected by some refinement criteria, is divided
and replaced by new cells. The process continues until the intended refinement level is reached or
until the maximum level. The adaptive mesh generated has groups of cells at different levels of
refinement, Figure 2. In [1], the grids are block-structured and follow certain rules to be properly
nested, as shown in Figure 2(a). By the other hand, [2, 10] present ACG dividing a cell into
four new fine cells, as illustrated in Figure 2(b). Additionally, to apply FD scheme (2) in these
meshes, it is necessary to define an interpolation method to the communication between cells at
different refinement levels. For example, in Figure 2(a), to obtain φU it is possible to apply the
second order Lagrange interpolation [7]. In contrast, approximating φD in Figure 2(b), requires
special techniques, such as, MLS interpolation, see [8]. Notably, MLS can also be utilized for
the approximation of φU in Figure 2(a). This versatility enhances the utility of MLS in ACG.
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In both interpolation methods, the five-point stencil alters the sparsity of the associated matrix.
Figure 2(c) presents the enumeration cells in lexicographical order by level (up) and by the order
of mesh creation (down) with the Hash Table data structure.

(a) Property nested AMR. (b) ACG. (c) ACG enumeration.

Figure 2: Composite meshes with three levels of refinement. Source: own creation.

3 Interpolation methods
The second order Lagrange interpolation for cell communication between two refinement levels,

known as fine-coarse interpolation or covered-cell interpolation, are illustrated in Figure 3. The
point, shown in red (×), in both cases must be approximated. In Figure 3(a), a second order
Lagrange interpolation with the coarse points Gi is first employed to obtain a value in the red
triangle. Then, another Lagrange interpolation including the fine points Fi is used to obtain × =
− 1

5F1+
2
3F2+

1
12G1+

1
2G2− 1

20G3. On the other hand, in Figure 3(b), the red (×) value is calculated
using two second-order Lagrange interpolations, with fine values Fi, ▲ = − 1

8F5 +
3
4F1 +

3
8F3 and

◦ = − 1
8F6 +

3
4F2 +

3
8F4. Using Lagrange interpolation again, with the approximations at the red

points (▲ and ◦) together with the coarse point C, the approximate value at point (×) is given
by, × = 1

2F1 +
3
10F2 +

1
4F3 +

3
20F4 − 1

12F5 − 1
20F6 − 1

15C. The high order in the last interpolation
is important for maintaining the second order approximation in the FD scheme (2), especially in
T-junction cells. In the ACG, in Figure 3(c), Lagrange interpolation is limited to the first order.

(a) Fine-coarse. (b) T-junction. (c) ACG - first order.

Figure 3: Second order Lagrange interpolations. Source: own creation.

Following [8], in the MLS method, we have used the polynomial base b =
[
1, x, y, xy, x2, y2

]
to

obtain the coefficients wj such as φ(x) ≈
∑6

j=1 wjbj(x). Using Algorithm 1, we need to choose, at
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least six neighbors points, to achieve second order of approximation. For ACG, we have selected
points using the neighborhood from the edges and nodes of the cell that contains the point to be
approximated.

Algorithm 1 Computation of weights wi using MLS interpolation from [8].
1: Given a list of k points xi, a point x ∈ R2 and a basis of l elements b1, b2 . . . , bl, with k ≥ l.
2: Calculate W = 1/

√
∥x− xi∥ and P = [bj(xi)], with 1 ≤ i ≤ k, 1 ≤ j ≤ l.

3: Do the QR decomposition to the matrix WP , such as QR1 = WP .
4: Define Q = [Q1 Q2], with Q1 ∈ Rk×l and Q2 ∈ Rk×k−l.
5: Define R1 = [R O]

t, such as R ∈ Rl×l and O ∈ Rk−l×l.
6: Compute b = (b1 (x) , . . . , bl (x))

t.
7: Solve the triangular system d = R−tb.
8: Calculate w = WQ1d, since w = WQ1R

−tb.

In Figure 4(a), to obtain the FD stencil for φC it is only necessary to find the fine-coarse
interpolation using MLS for φD. The other points φL, φR and φU are at the same fine level as
φC . Since φD belongs to the gray cell with center point P0, the known points next to this cell
depend on its edges (blue lines) and nodes (red lines). These points are chosen in counterclockwise
orientation for edges and in clockwise orientation for nodes. For example, in Figure 4(a) we
obtained the following: left edge (P1), down edge (P2), right edge (P3), above edge in a fine level
share with cells (P4 and P5), left above node (P6), right above node (P7), right down node (P8)
and left down node (P9). Finally, in this case, the list of ten points given to the MLS Algorithm 1
is [P0, P1, P2, · · · , P9].

(a) Fine-coarse. (b) Covered-cell case 1. (c) Covered-cell case 2.

Figure 4: Points selection to MLS in ACG with three levels of refinement. Source: own creation.

We consider two cases in which we select points for covered cells. Case 1 is shown in Figure
4(b), where φC is the cell approximated by the FD stencil and φD is the point to be approximated
by MLS. φD is a node to four fine cells, so the next cell choose is the left above (P0) and to this
cell is done the order for edges and nodes, as described before for the Fine-coarse interpolation.
So the list of points is given by: left edge in a coarse level (P1), down edge in a fine level (P2),
right edge in a fine level (P3), above edge in a coarse level (P4), right down node (P5), left down
node (P2) (already chosen), left above node (P6) and the right above node (P4) (already chosen).
Finally, the list of seven points for Algorithm 1 is [P0, P1, P2, · · · , P6].

Case 2 is included in Figure 4(c), where φR is the point to be approximated for the FD stencil
of φC . φR is a node in the corner of four fine cells. Using case 1, the cell selected nearest is the
point P0 (in gray). After this, the selected points are: left edge in a coarse level (P1), the down
edge point needs to be approximated with the boundary condition, right edge in a fine level (P2),

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0316 010316-5 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0316


6

above edge in a fine level (P3) and the right above node (P4) are the only possible options to be
selected. The problem in this case is that the list has only five points, and the method requires
at least six. Therefore, all neighboring points from the edges in green are additionally selected to
complete the list. The resulting list with thirteen points for Algorithm 1 is [P0, P1, P2, · · · , P12].

4 Results and Discussion
Numerical results are presented using different meshes, Figure 5, to approximate the Poisson’s

equation (1) with Dirichlet and Neumann boundary conditions, Ω = [0, 1] × [0, 1], f(x, y) =
−8π2 sin (2πx) sin (2πy) and analytic solution φ(x, y) = sin (2πx) sin (2πy). MLS can be used in
ACG meshes, Figure 5(a)-(c). Lagrange interpolation can only be used in properly nested meshes,
Figure 5(a). The results obtained in tables 1 and 2 present the second-order convergence accuracy.
Thus, MLS and Lagrange interpolation are working properly. The matrix information in Table 2
shows that the condition number increases with the dimension of the matrix, but the ratio between
maximum and minimum singular values approaches one.

(a) Property nested AMR. (b) ACG. (c) Aleatory ACG.

Figure 5: Test meshes. Source: own creation.

Table 1: Error and convergence order for mesh in Figure 5(a) with uniform mesh base n× n.
Dirichlet

Lagrange MLS
n Error Ratio Error Ratio
16 4.5393e-3 - 3.9021e-3 -
32 1.1068e-3 4.101 1.1512e-3 3.390
64 2.7432e-4 4.035 3.1484e-4 3.656
128 6.8341e-5 4.014 8.2383e-5 3.822
256 1.7059e-5 4.006 2.1073e-5 3.909
512 4.2617e-6 4.003 5.3291e-6 3.954

Neumann
Lagrange MLS

n Error Ratio Error Ratio
16 7.1250e-3 - 5.7704e-03 -
32 1.7036e-3 4.182 2.3291e-3 2.478
64 4.1617e-4 4.094 7.3404e-4 3.173
128 1.0281e-4 4.048 2.0420e-4 3.595
256 2.5548e-5 4.024 5.3716e-5 3.802
512 6.3675e-6 4.012 1.3766e-5 3.902

Furthermore, the number of points used in Algorithm 1 for MLS interpolations was analyzed.
For n = 16, in Figure 5(b), the minimum and maximum number of points were 6 and 22, respec-
tively. The number of non-zero entries in the matrix was nnz = 22237, representing only 0.83%
of the dimension of the matrix. This justifies the use of sparse matrices. Similarly, with n = 32
(Figure 5(c)), the point count ranged from a minimum of 6 to a maximum of 16, with nnz = 20692.

We present an adaptive method to solve Poisson’s equation using a matrix formulation. We have
compared the MLS and Lagrange interpolation to approximate data. The numerical verification
performed indicates that the numerical method has second-order convergence accuracy for problems
with smooth solutions. The results corroborate that MLS constitutes a versatile and valuable
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Table 2: Error and convergence order, MLS interpolation and matrix information.
Mesh in Figure 5(b)

n Error Ratio Condest λmax

λmin

16 4.0869e-3 - 1.4879e+5 1.027
32 1.0967e-3 3.727 6.3640e+5 1.007
64 2.8359e-4 3.867 2.6387e+6 1.002
128 7.2102e-5 3.933 1.0719e+7 1.001
256 1.8176e-5 3.967 4.3197e+7 -

Mesh in Figure 5(c)
n Error Ratio Condest λmax

λmin

32 1.1890e-3 - 1.0719e+5 1.015
64 3.2271e-4 3.684 4.3461e+5 1.002
128 8.4997e-5 3.797 1.7449e+6 1.000
256 2.1952e-5 3.872 6.9869e+6 1.000
512 5.5836e-6 3.932 2.7961e+7 -

methodology with potential application in various ACG contexts. Thereby obviating the need
for ghost cells. The use of lexicographical enumeration clearly defines matrix bands, unlike Hash
Table construction. Although the number of non-zeros is the same, structured bands improve
matrix efficiency. This work was partially supported by VIIS-UDENAR.
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