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Resumo. Apresentamos um estudo da simulagdo numérica para as solugoes aproximadas de um
problema néo linear associado a uma equagao do tipo Benjamin-Bona-Mahony (BBM), definida em
um dominio néo cilindrico. A solugdo aproximada é obtida através do Método de Crank-Nicolson
Galerkin linearizado, aplicado a um problema equivalente definido em um dominio cilindrico. Este
dominio é obtido por meio de um difeomorfismo que transforma o problema original, definido
em um dominio néo cilindrico, em um problema equivalente no cilindro. O esquema utilizado se
destaca por recair, em cada passo de tempo, em um sistema algébrico linear, isso mantendo a ordem
de convergéncia quadratica no tempo, caracteristica do Método de Crank-Nicolson. Ilustramos a
convergéncia do erro, tanto no tempo como no espaco, nos casos uni e bidimensionais, usando os
polinémios de Hermite ctibicos como base para o espago aproximado. Os resultados apresentados
confirmam a consisténcia entre resultados teéricos e numeéricos, validando a precisao, estabilidade
e aplicabilidade da implementagao do método numérico proposto.

Palavras-chave. BBM, Dominio Nao Cilindrico, Crank-Nicolson Galerkin Linearizado, Simulagao

1 Introducao

Neste trabalho, realizamos a simulagao numérica de um problema nao linear em um dominio
nao cilindrico relacionado a uma equagao do tipo BBM. O modelo abordado é dado por

W (z,t) — Au (2, ) + dived(u(z, ) = 0 em Q,
u(z,t) =0em » (1)

u(z,0) = up(z) em Qo,

emque, Q= |J @ x{t},>. = U Ty x{t}, sendo I'; a fronteira de Q; C R?, e ¢ : R — R%.
0<t<T 0<t<T
A equagdo BBM, introduzida por Benjamin, Bona e Mahony em [1], é uma extensao da equagao
de Korteweg-de Vries (KdV), que descreve ondas longas de pequena amplitude propagando-se em
uma tnica diregdo. O modelo (1) é um caso particular do problema tratado em [2], onde os autores
demonstram a existéncia e unicidade de solugao para uma generalizacao da BBM em dominio nao
cilindrico.
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Dada a dificuldade de obter solugoes exatas para equagoes diferenciais, métodos numéricos
sao utilizados para gerar solucoes aproximadas. Na literatura encontramos diversos trabalhos
sobre estimativas de erros para solugoes aproximadas de diversas variantes da BBM em dominios
cilindricos [6]. No entanto, 0 mesmo néo ocorreu para dominios nao cilindricos.

Identificamos apenas um estudo sobre solugao aproximada para equacoes do tipo BBM em
dominios néo cilindricos [4]. Nele, os autores utilizam o método de Crank-Nicolson Galerkin, mas
com uma perda na ordem de convergéncia no tempo devido & linearizagao do termo nao linear. O
trabalho aborda a simulagdo numeérica para a equagao u’ — ul,, + u; + uu, = 0 em um dominio
nao cilindrico unidimensional, com condicao de fronteira Dirichlet homogénea. Até onde temos
conhecimento, o trabalho pioneiro em estimativas de erro para o modelo (1) foi realizado por
Machado em [3]. Neste trabalho, foi abordado o problema semi-discreto e o totalmente discreto,
utilizando o método de Galerkin e Crank-Nicolson Galerkin linearizado, respectivamente.

No presente trabalho, abordamos a solugao numérica do problema totalmente discreto, definido
via 0 Método de Crank-Nicolson Galerkin linearizado, para os casos uni e bidimensionais, utilizando
os polinémios de Hermite ciibicos como base para os espagos de elementos finitos. Para avaliar a
implementagao, comparamos nossos resultados com os resultados tedricos de estimativa de erros
estabelecidos por Machado em [3]. Além disso, realizamos investiga¢oes numéricas adicionais. Ini-
cialmente, examinamos o impacto de uma fronteira que nao satisfaz uma das hipdteses necessarias.
Em seguida, ilustramos a razao por tras da ordem de convergéncia observada no espaco. Essas
analises enriquecem nossa compreensao sobre a solugao aproximada adotada.

O restante do trabalho esté estruturado da seguinte maneira: na Secao 2, é apresentado o
teorema que assegura a existéncia e unicidade de solugao do modelo em estudo. Na Secao 3, é
definido o problema totalmente discreto e na 4, essa aproximacao é ilustrada para os casos uni e
bidimensionais. J& na Secdo 5, sdo apresentadas as investigagbes adicionais sobre a condi¢ao de
fronteira e a ordem de convergéncia no espago. Por fim, na Secao 6, sdo tratadas as consideragoes
finais.

2 Existéncia e Unicidade

Os Teoremas de Existéncia e Unicidade de solugéo fraca para o problema (1) foram estabelecidos
em [2] utilizando os métodos de Faedo-Galerkin e da energia. A estratégia adotada pelos autores
consiste em realizar uma mudanga de varidvel que transforma o problema original em um problema
equivalente, definido em um dominio cilindrico. Essa transformacao é realizada por meio de um
difeomorfismo 7y, : @ — @ tal que, (z,t) — (y,t) = (ﬁ,t) em que, @ =  x [0, T[ representa
o dominio cilindrico, Y =T x [0, a fronteira lateral de @ e I' a fronteira de Q. Utilizando o
difeomorfismo e observando que z(t) = k(t)y, os autores definem a funcdo v : @ — R como

u(y,t) = (wor, )(y,t) = u(w,1),

o que permite a aplicagao de resultados de compacidade e do método de Galerkin. Apds a mudanca
de variavel, o problema transformado é definido no cilindro @ = Q x [0, T[ e expresso por

/ 1 / K t d 81) s 2K (t
R =T e RN 10 ;y 83] * k3((t))m(y’t)
- IZ((;))y Vo(y,t) + ﬁdivy‘ﬁ(v(y»t)) =0, (y,t)€Q, 2)
oy, ) =0, (e,
v(y,0) =wo(y), ye
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Como os problemas (1) e (2) sao equivalentes, a existéncia e unicidade de solugdo no dominio
cilindrico assegura as mesmas propriedades para o problema original, definido no dominio nao
cilindrico. Esses resultados sao obtidos sob as seguintes hipoteses:

(H1) k & uma fungao real continuamente derivavel em [0,7], com k'(t) <0 e 0 < ko < k(t) < ky;

(H2) T é de classe C? e y-v >0, Vy € T, onde v é a normal exterior unitéria a I' em y;

(H3) ¢ € C'(R,R?Y) com ¢(s) = (41(5), p2(s), - -, dals)), (0) =0 e [¢j(s)] < Ci(1+]s|**) para
i=1,2,...,d, onde, para cada i, C; > 0, 0 < oy, sedSQ,eOSaigﬁ,sed>2.

Sob essas condigoes, os autores em [2] garantem o sentido da igualdade e a regularidade da solugao.

Teorema 2.1. (Solugio Fraca) Se vg € HE(Q) N H%(Q) e satisfaz as hipdteses (H1)-(H3), entdo
o problema de valor inicial (2) possui uma tnica solugio v : Q — R na classe

v € L*(0,T: Hy(2) N H*(Q)), v € L%(0,T; Hy(Q)), (3)
satisfazendo a identidade integral

/ 1 i K _ v ok’
vVwdydt+ | Vv - Vwdydt — / —=V— - V(y;w) dydt—/ —Vuv - Vwdydt
Q Q K ok oy Q K

/
1
- /Q %y~va dy dt + /Q Edivygb(v)wdydt =0, (4)

para todo w € L*(0,T; H}(Q)) e T > 0. Além disso, v verifica a condigio inicial v(y,0) = v (y).

3 Problema Totalmente Discreto

Seguindo [5], dado r € N fixo, r > 3, seja {57, (2) }o<h<1 uma familia de subespagos de dimensao
finita de H}(Q) N H2() satisfazendo a seguinte propriedade de aproximagao:

inf v =i+ hlo =l + ¥ lv = xll2} < eh®||v]ls, sev € Hy(Q) NVH*(Q), com3 < s <,

X€S},
sendo ¢ uma constante independente de h e v e ||-| e | - ||s as normas de L(Q) e H*(L).

Para estabelecer o esquema totalmente discreto, consideramos {t,; t, = n7; 0 <n < N} uma
discretizagdo uniforme no intervalo [0,7], com 7 o passo de tempo, N a parte inteira de T/7 e
tn—1/2 = (tn +tn_1)/2 o ponto médio do n-ésimo intervalo. Ademais, dada uma fungao w definida
sobre a discretizagao, com w" = w(t,) e w™® uma solugao preditora para w(t;), adotamos:

W =w" sen=“1,0", w

*70

Mo sen=1, w"=&", sen>2 0w = (W w7,
(1}1’0 _ (wl,O _,'_WO)/Q7 5&)” _ (wn _ w"_1>/7', o = (wn +wn—1)/2) o = (3wn—1 _ wn—Z)/z

A solugao aproximada no tempo 1 é obtida por meio de um método preditor-corretor de passo
anico. A notacdo n = “1,0” em (5) indica a etapa preditora, cuja solugdo aproximada é denotada
por V10, Em seguida, considerando n = 1, obtém-se a solucdo corretora, V. Nesse contexto, dado
V0 € S7(9Q), o esquema totalmente discreto definido via o Método de Cranck-Nicolson Galerkin
linearizado consiste em determinar V™ em S} (), tal que, Vx € 57 (Q),

(Evn ) + 7(V5V" \V4 ) _ M - (VLVTL V(y; )) _ %(V{/n v )
k/(tn7% . 1 *n « 9 N
- k(tn,%) (?JVV aX)"V‘k(tni%)(v(ﬁ(V )7X) _07 para n = 170 717 27"'7 . (5)
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A existéncia e unicidade de solugao do problema (5), segue do fato deste ser equivalente a um
sistema linear do tipo Ay = b, com A inversivel. Os resultados da estimativa de erro associada a
solugdo do problema totalmente discreto foram realizados por Machado em [3], e dado por

E:=E(h, 1) = OénnanNHV(V" —v(ty))| < C(h*7% 4+ 72). (6)

No caso dos polinémios de Hermite ciibico, tal estimativa estabelece que: E(h,7) < C(h? 4 72).

4 Simulagao Numérica

Nesta secao, apresentamos a solugao do problema totalmente discreto, definido em (5), para os
casos uni e bidimensionais e espago aproximado S} (§2) definido a partir dos polinomios de Hermite
cubico. Toda a implementacao foi realizada no software MATLAB. As fronteiras adotadas na
simulacao satisfazem as hipoteses exigidas em (H1), sendo escolhidas como:

2t +1
Front. 1: Q=] —1,1[, caso 1D, Q=]—1,1[x]—1,1], caso 2D, e k(t)= 4t11'

t+1
Front. 2: Q=] —1,1], caso 1D, Q=] —1,1[x]—1,1], caso 2D, e k(t)= A+ 1

t+1
Front. 3: Q =] —1,1[, caso 1D, Q=] —1,1[x] —1,1], caso 2D, e k(t)= TR

Os resultados sao exibidos da seguinte maneira: para cada um dos casos, unidimensional e
bidimensional, consideramos inicialmente a versdo nao homogénea de (2) para validar o esquema.
Apos a validacdo da implementagio, retornamos ao modelo original e apresentamos a solugao
aproximada. Definimos a fonte g da versao nao homogénea e a solugao inicial vy a partir da escolha
de v, aqui dadas por, v(y,t) = —sen(mwy)et, no caso 1D e v(y1,y2,t) = —sen(mwy1)sen(nyz)e! no
caso 2D. Além disso, a menos que explicitamente indicado o contrario, consideramos

2 §2 52

V=P, T=1, gb(s):er% no caso 1D e ¢(s):(s+5,s+?) no caso 2D,

em que, o operador projecao eliptica é definido por

Py Hy () — 5;(Q)
v —  Ppu, talque (VPyv—Vu,Vyx) =0, Vx€S;(Q).

Caso Unidimensional. Na Figura 1 exibimos o erro E(h, 7) em fungéo de 7 e h para as fronteiras
1, 2 e 3. Em ambos os casos, observamos que a ordem de convergéncia é aproximadamente 2, e
portanto, esta de acordo com (6). Na Figura 2, temos as solugbes numeéricas U™ para cada passo
de tempo da discretizagio temporal de [0,7]. Utilizamos h = 273, 7 = 275 e, da esquerda para a
direita, consideramos as fronteiras 1, 2 e 3.

-+ Front. 1 ,%f®i‘ O Front 1
103k |- 4+ Front.2 vl 108 |-+t Front.2
.....@---- Front.3 @ . ----@---- Front. 3
:’ .f’a' 5
=] ' =
10 ®® 2 ST
@ _@ﬁa Q. .8
1078 107 ®
10" 10 107 10" 10* 10° 107 10

Figura 1: Problema nao homogéneo 1D. Convergéncia do erro no tempo e espago. Fonte: dos autores.

DOI: 10.5540/03.2026.012.01.0320 010320-4 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0320

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

ALK
256
ooty

0"
e
R,
5%

1
S
vt
e
Ceteto

I,

y,

Figura 2: Problema homogéneo 1D. {U"})_,, com h =273, 7 =27 e front. 1, 2 e 3. Fonte: dos autores.

Caso Bidimensional. A Figura 3 mostra o estudo do erro no tempo e no espago. Assim como no
caso unidimensional, os resultados estao de acordo com o estudo tedrico. Na Figura 4, apresentamos
a solugao numérica U™ nos tempos t, t% e ty, com N = 64, referente a fronteira 1.

102 |- O+ Front. 1
- 4---- Front. 2
TP

102F |- O Front. 1
<---4=--- Front. 2
[T

Front. 3

Figura 3: Problema nao homogéneo 2D. Convergéncia do erro no tempo e espago. Fonte: dos autores.
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Figura 4: Problema homogéneo 2D. Solugao Numérica U° (4 esquerda), U B (centro) e UN (& direita),
com N =64, 7=1/64, h = 27% e fronteira 1. Fonte: dos autores.

5 Investigacoes Adicionais

Necessidade da Hipotese £'(t) < 0

Essa hipotese é essencial tanto para a existéncia e unicidade da solu¢gao do modelo quanto para
a obtengdo das estimativas de erro das solugdes aproximadas, conforme observado em [3]. Assim
sendo, surge um questionamento natural, o que acontece quando essa condi¢ao nao é satisfeita?

A Fronteira 4, definida a seguir, tem como proposito investigar numericamente a relevancia do
sinal de K’ na estimativa de erro dada em (6). Para T €0, %[, k satisfaz as hip6teses em (H1).
Contudo, para T € [1%, 1], a condicao k'(t) < 0 nem sempre é satisfeita.
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Front. 4: @ =] —1,1[no 1D, Q@ =] — 1,1[x] — 1,1[ no 2D e k(t) = 1 + % (cos(2m(t + 0,1)) — 1).

As Tabelas 1 e 2 apresentam o estudo do erro espacial considerando a fronteira 4 para diferentes
valores de T. Como pode ser visto nos resultados apresentados, a condi¢ao imposta sobre k'(t) é
de fato relevante. Isso € ilustrado no exemplo em questdo, uma vez que o erro nao se comportou
da mesma forma que nas fronteiras 1, 2 e 3 para os casos em que T é maior do que 0, 4.

Tabela 1: Problema nao homogéneo 1D. Estudo do erro no espago, E(h,7) com 7 = h%, para a front. 4.

T-0,3 T-05 T—0.8 T—1

h Erro Taxa Erro Taxa Erro Taxa Erro Taxa

2703 5 91e—3 — 7,28¢—3 —  8,50e —2 — 1,23e—1 —
2704 1 60e—3 1,8778 1,8le—3  2,0067 7,44e—2  0,1927 1,10e—1 0,1614
205 403¢e—4  1,9954 4,53e—4  2,0008 7,1le—2  0,0656 1,07e —1 0,0371
2706 1 0le—4  1,9983 1,13e—4  2,0002 7,24e—2 —0,0271 1,07e—1 0,0093
2707 2 53¢—5 1,9972 2,83e—5  2,0001 7,28 —2 —0,0064 1,06e—1 0,0022
2708 632 —6 1,9996 7,07e—6  2,0000 7,28¢—2 —0,0012 1,06e —1 0,0005
2709 1 58¢—6 1,9995 3,54e—6  0,9984 7,29¢—2 —0,0018 1,06e—1 0,0001
2710 395 —7  1,9999 3,2le—6  0,1407 7,29¢—2  0,0000 1,06e—1 0,0000
2-11 9 .9le—8 1,9960 3,17e—6  0,0161 7,29¢e—2  0,0000 1,06e —1 0,0000
2712 3 40e—7 —1,7781 3,19e—6 —0,0078 7,25¢e—2  0,0091 1,06e—1 0,0100

Tabela 2: Problema nao homogéneo 2D. Estudo do erro no espago, E(h,7) com 7 = h%, para a front. 4.

T=0,3 T=0,5 T=0,8 T=1

h Erro Taxa Erro Taxa Erro Taxa Erro Taxa
2-3 9,65e — 3 - 1,08¢ — 2 — 6,46e — 2 — 1,46e — 1 —
273 2,34e —3 2,0440 2,70e—3 2,0067 8,25¢—2 —0,3517 1,28e—1 0,1883
273 5,96e —4 1,9731 6,73e—4 2,0037 8,65e—2 —0,0673 1,25e—1 0,0403
2= % 1,49¢ —4 1,9950 1,68¢—4 2,0008 8§,52e—2 0,0209 1,24e—1 0,0097
2- % 3,74e —5 1,9976 4,20e—5 2,0001 8,56e—2 —0,0059 1,24e—1 0,0023
2= % 9,36e—6 1,9996 1,05e—5 2,0000 8,6le—2 —0,0084 1,24e—1 0,0005

Perda da Ordem de Convergéncia no Espaco

O objetivo desta subsegao é investigar a perda da ordem de convergéncia no espago na estimativa
de erro do problema totalmente discreto. Destacamos que, para uma variedade de problemas
parabolicos, veja [5] e suas referéncias, a convergéncia 6tima na norma de H{(Q2) é O (hs_l).
No entanto, a estimativa (6) obtida em [3] apresenta ordem de convergéncia O (h*~?) no espago.
No caso de Hermite ciibico como base do espago aproximado, as ordens O(h*~!) e O(h*~?) se
traduzem em O(h3) e O(h?), respectivamente. Mostraremos que essa perda de convergéncia se

d
deve a presenca do termo Y yjA(%;’j’t)) em (2).
=1

Para ilustrar numericarjnente a perda de convergéncia, implementamos o problema sem o termo
mencionado e exibimos os resultados de erro no espago para casos uni e bidimensionais. A Figura
5 confirma uma ordem de convergéncia O(h?) no espago para o modelo simplificado, enquanto o
problema original tem uma ordem de convergéncia de O(h?). Esses resultados destacam que a
perda de ordem de convergéncia é devida ao termo removido do modelo.
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Figura 5: Problema simplificado ndo homogéneo. Convergéncia do erro (1D e 2D). Fonte: dos autores.

6 Consideracoes Finais

Neste estudo, realizamos simulagoes numéricas de uma equagao do tipo BBM com fronteira
moével. A BBM é uma evolugao da equacao de Korteweg-de Vries, que modela ondas de pequena
amplitude que se propagam em uma unica direcdo. Ao abordar a BBM em um dominio néo
cilindrico, buscamos fornecer um estudo mais realistico e abrangente do modelo.

Implementamos o esquema totalmente discreto nos casos uni e bidimensional, com polinémios
de Hermite cubicos como base para o espaco aproximado. Ilustramos os resultados de estimativa
de erro no tempo e espaco e constatamos que estes foram consistentes com o estudo teérico. Por
fim, investigamos numericamente dois aspectos relacionados & solu¢ao aproximada do modelo em
estudo. Primeiro, confirmamos a relevancia da condi¢ao k'(t) < 0. Segundo, mostramos que a
perda da ordem de convergéncia no espago esta relacionada a uma parcela especifica do modelo.
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