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Resumo. Apresentamos um estudo da simulação numérica para as soluções aproximadas de um
problema não linear associado a uma equação do tipo Benjamin-Bona-Mahony (BBM), definida em
um domínio não cilíndrico. A solução aproximada é obtida através do Método de Crank-Nicolson
Galerkin linearizado, aplicado a um problema equivalente definido em um domínio cilíndrico. Este
domínio é obtido por meio de um difeomorfismo que transforma o problema original, definido
em um domínio não cilíndrico, em um problema equivalente no cilindro. O esquema utilizado se
destaca por recair, em cada passo de tempo, em um sistema algébrico linear, isso mantendo a ordem
de convergência quadrática no tempo, característica do Método de Crank-Nicolson. Ilustramos a
convergência do erro, tanto no tempo como no espaço, nos casos uni e bidimensionais, usando os
polinômios de Hermite cúbicos como base para o espaço aproximado. Os resultados apresentados
confirmam a consistência entre resultados teóricos e numéricos, validando a precisão, estabilidade
e aplicabilidade da implementação do método numérico proposto.
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1 Introdução
Neste trabalho, realizamos a simulação numérica de um problema não linear em um domínio

não cilíndrico relacionado a uma equação do tipo BBM. O modelo abordado é dado por
u′(x, t)−∆u′(x, t) + divxϕ(u(x, t)) = 0 em Q̂,

u(x, t) = 0 em
∑̂

,

u(x, 0) = u0(x) em Ω0,

(1)

em que, Q̂ =
⋃

0≤t<T

Ωt × {t},
∑̂

=
⋃

0≤t<T

Γt × {t}, sendo Γt a fronteira de Ωt ⊂ Rd, e ϕ : R → Rd.

A equação BBM, introduzida por Benjamin, Bona e Mahony em [1], é uma extensão da equação
de Korteweg-de Vries (KdV), que descreve ondas longas de pequena amplitude propagando-se em
uma única direção. O modelo (1) é um caso particular do problema tratado em [2], onde os autores
demonstram a existência e unicidade de solução para uma generalização da BBM em domínio não
cilíndrico.

1machadovc@ufrrj.br
2bruno.carmo@ppgi.ufrj.br
3rincon@ic.ufrj.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 12, n. 1, 2026.

Trabalho apresentado no XLIV CNMAC, Fundação Getulio Vargas - Rio de Janeiro - RJ, 2025.

DOI: 10.5540/03.2026.012.01.0320 010320-1 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0320


2

Dada a dificuldade de obter soluções exatas para equações diferenciais, métodos numéricos
são utilizados para gerar soluções aproximadas. Na literatura encontramos diversos trabalhos
sobre estimativas de erros para soluções aproximadas de diversas variantes da BBM em domínios
cilíndricos [6]. No entanto, o mesmo não ocorreu para domínios não cilíndricos.

Identificamos apenas um estudo sobre solução aproximada para equações do tipo BBM em
domínios não cilíndricos [4]. Nele, os autores utilizam o método de Crank-Nicolson Galerkin, mas
com uma perda na ordem de convergência no tempo devido à linearização do termo não linear. O
trabalho aborda a simulação numérica para a equação u′ − u′

xx + ux + uux = 0 em um domínio
não cilíndrico unidimensional, com condição de fronteira Dirichlet homogênea. Até onde temos
conhecimento, o trabalho pioneiro em estimativas de erro para o modelo (1) foi realizado por
Machado em [3]. Neste trabalho, foi abordado o problema semi-discreto e o totalmente discreto,
utilizando o método de Galerkin e Crank-Nicolson Galerkin linearizado, respectivamente.

No presente trabalho, abordamos a solução numérica do problema totalmente discreto, definido
via o Método de Crank-Nicolson Galerkin linearizado, para os casos uni e bidimensionais, utilizando
os polinômios de Hermite cúbicos como base para os espaços de elementos finitos. Para avaliar a
implementação, comparamos nossos resultados com os resultados teóricos de estimativa de erros
estabelecidos por Machado em [3]. Além disso, realizamos investigações numéricas adicionais. Ini-
cialmente, examinamos o impacto de uma fronteira que não satisfaz uma das hipóteses necessárias.
Em seguida, ilustramos a razão por trás da ordem de convergência observada no espaço. Essas
análises enriquecem nossa compreensão sobre a solução aproximada adotada.

O restante do trabalho está estruturado da seguinte maneira: na Seção 2, é apresentado o
teorema que assegura a existência e unicidade de solução do modelo em estudo. Na Seção 3, é
definido o problema totalmente discreto e na 4, essa aproximação é ilustrada para os casos uni e
bidimensionais. Já na Seção 5, são apresentadas as investigações adicionais sobre a condição de
fronteira e a ordem de convergência no espaço. Por fim, na Seção 6, são tratadas as considerações
finais.

2 Existência e Unicidade
Os Teoremas de Existência e Unicidade de solução fraca para o problema (1) foram estabelecidos

em [2] utilizando os métodos de Faedo-Galerkin e da energia. A estratégia adotada pelos autores
consiste em realizar uma mudança de variável que transforma o problema original em um problema
equivalente, definido em um domínio cilíndrico. Essa transformação é realizada por meio de um
difeomorfismo τk : Q̂ → Q tal que, (x, t) 7→ (y, t) =

(
x

k(t) , t
)

em que, Q = Ω × [0, T [ representa
o domínio cilíndrico,

∑
= Γ × [0, T [ a fronteira lateral de Q e Γ a fronteira de Ω. Utilizando o

difeomorfismo e observando que x(t) = k(t)y, os autores definem a função v : Q → R como

v(y, t) = (u ◦ τ−1
k )(y, t) = u(x, t),

o que permite a aplicação de resultados de compacidade e do método de Galerkin. Após a mudança
de variável, o problema transformado é definido no cilindro Q = Ω× [0, T [ e expresso por

v′(y, t)− 1

k2(t)
∆v′(y, t) +

k′(t)

k3(t)

d∑
j=1

yj∆
∂v(y, t)

∂yj
+

2k′(t)

k3(t)
∆v(y, t)

− k′(t)

k(t)
y · ∇v(y, t) +

1

k(t)
divyϕ(v(y, t)) = 0, (y, t) ∈ Q,

v(y, t) = 0, (y, t) ∈
∑

,

v(y, 0) = v0(y), y ∈ Ω.

(2)
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Como os problemas (1) e (2) são equivalentes, a existência e unicidade de solução no domínio
cilíndrico assegura as mesmas propriedades para o problema original, definido no domínio não
cilíndrico. Esses resultados são obtidos sob as seguintes hipóteses:

(H1) k é uma função real continuamente derivável em [0, T ], com k′(t) < 0 e 0 < k0 ≤ k(t) ≤ k1;

(H2) Γ é de classe C2 e y · ν ≥ 0, ∀y ∈ Γ, onde ν é a normal exterior unitária a Γ em y;

(H3) ϕ ∈ C1(R,Rd) com ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕd(s)), ϕ(0) = 0 e |ϕ′
i(s)| ≤ Ci(1+ |s|σi) para

i = 1, 2, . . . , d, onde, para cada i, Ci ≥ 0, 0 ≤ σi, se d ≤ 2, e 0 ≤ σi ≤ 2
d−2 , se d > 2.

Sob essas condições, os autores em [2] garantem o sentido da igualdade e a regularidade da solução.

Teorema 2.1. (Solução Fraca) Se v0 ∈ H1
0 (Ω) ∩H2(Ω) e satisfaz as hipóteses (H1)-(H3), então

o problema de valor inicial (2) possui uma única solução v : Q → R na classe

v ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), v′ ∈ L∞(0, T ;H1

0 (Ω)), (3)

satisfazendo a identidade integral∫
Q

v′w dy dt+

∫
Q

1

k2
∇v′ · ∇w dy dt−

d∑
j=1

∫
Q

k′

k3
∇ ∂v

∂yj
· ∇(yjw) dy dt−

∫
Q

2k′

k3
∇v · ∇w dy dt

−
∫
Q

k′

k
y · ∇vw dy dt+

∫
Q

1

k
divyϕ(v)w dy dt = 0, (4)

para todo w ∈ L2(0, T ;H1
0 (Ω)) e T > 0. Além disso, v verifica a condição inicial v(y, 0) = v0(y).

3 Problema Totalmente Discreto
Seguindo [5], dado r ∈ N fixo, r ≥ 3, seja {Sr

h(Ω)}0<h<1 uma família de subespaços de dimensão
finita de H1

0 (Ω) ∩H2(Ω) satisfazendo a seguinte propriedade de aproximação:

inf
χ∈Sr

h(Ω)
{∥v − χ∥+ h∥v − χ∥1 + h2∥v − χ∥2} ≤ chs∥v∥s, se v ∈ H1

0 (Ω) ∩Hs(Ω), com 3 ≤ s ≤ r,

sendo c uma constante independente de h e v e ∥ · ∥ e ∥ · ∥s as normas de L2(Ω) e Hs(Ω).
Para estabelecer o esquema totalmente discreto, consideramos {tn; tn = nτ ; 0 ≤ n ≤ N} uma

discretização uniforme no intervalo [0, T ], com τ o passo de tempo, N a parte inteira de T/τ e
tn−1/2 = (tn + tn−1)/2 o ponto médio do n-ésimo intervalo. Ademais, dada uma função ω definida
sobre a discretização, com ωn = ω(tn) e ω1,0 uma solução preditora para ω(t1), adotamos:

ω∗n = ω0, se n = “1, 0”, ω∗n = ω1,0, se n = 1, ω∗n = ω̃n, se n ≥ 2, ∂ω1,0 = (ω1,0 − ω0)/τ,

ω̂1,0 = (ω1,0 + ω0)/2, ∂ωn = (ωn − ωn−1)/τ, ω̂n = (ωn + ωn−1)/2, ω̃n = (3ωn−1 − ωn−2)/2.

A solução aproximada no tempo t1 é obtida por meio de um método preditor-corretor de passo
único. A notação n = “1, 0” em (5) indica a etapa preditora, cuja solução aproximada é denotada
por V 1,0. Em seguida, considerando n = 1, obtém-se a solução corretora, V 1. Nesse contexto, dado
V 0 ∈ Sr

h(Ω), o esquema totalmente discreto definido via o Método de Cranck-Nicolson Galerkin
linearizado consiste em determinar V n em Sr

h(Ω), tal que, ∀χ ∈ Sr
h(Ω),(

∂V n, χ
)
+

1

k2(tn− 1
2
)

(
∇∂V n,∇χ

)
−

k′(tn− 1
2
)

k3(tn− 1
2
)

d∑
j=1

(
∇∂V̂ n

∂yj
,∇(yjχ)

)
−

2k′(tn− 1
2
)

k3(tn− 1
2
)

(
∇V̂ n,∇χ

)
−

k′(tn− 1
2
)

k(tn− 1
2
)

(
y · ∇V̂ n, χ

)
+

1

k(tn− 1
2
)

(
∇ · ϕ(V ∗n), χ

)
= 0, para n = “1, 0”, 1, 2, . . . , N. (5)
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A existência e unicidade de solução do problema (5), segue do fato deste ser equivalente a um
sistema linear do tipo Ay = b, com A inversível. Os resultados da estimativa de erro associada à
solução do problema totalmente discreto foram realizados por Machado em [3], e dado por

E := E(h, τ) = max
0≤n≤N

∥∇(V n − v(tn))∥ ≤ C(hs−2 + τ2). (6)

No caso dos polinômios de Hermite cúbico, tal estimativa estabelece que: E(h, τ) ≤ C(h2 + τ2).

4 Simulação Numérica
Nesta seção, apresentamos a solução do problema totalmente discreto, definido em (5), para os

casos uni e bidimensionais e espaço aproximado Sr
h(Ω) definido a partir dos polinômios de Hermite

cúbico. Toda a implementação foi realizada no software MATLAB. As fronteiras adotadas na
simulação satisfazem às hipóteses exigidas em (H1), sendo escolhidas como:

Front. 1: Ω =]− 1, 1[, caso 1D, Ω =]− 1, 1[×]− 1, 1[, caso 2D, e k(t) =
2t+ 1

4t+ 1
.

Front. 2: Ω =]− 1, 1[, caso 1D, Ω =]− 1, 1[×]− 1, 1[, caso 2D, e k(t) =
t+ 1

4t+ 1
.

Front. 3: Ω =]− 1, 1[, caso 1D, Ω =]− 1, 1[×]− 1, 1[, caso 2D, e k(t) =
t+ 1

10t+ 1
.

Os resultados são exibidos da seguinte maneira: para cada um dos casos, unidimensional e
bidimensional, consideramos inicialmente a versão não homogênea de (2) para validar o esquema.
Após a validação da implementação, retornamos ao modelo original e apresentamos a solução
aproximada. Definimos a fonte g da versão não homogênea e a solução inicial v0 a partir da escolha
de v, aqui dadas por, v(y, t) = −sen(πy)et, no caso 1D e v(y1, y2, t) = −sen(πy1)sen(πy2)e

t no
caso 2D. Além disso, a menos que explicitamente indicado o contrário, consideramos

V 0 = Phv0, T = 1, ϕ(s) = s+
s2

2
no caso 1D e ϕ(s) = (s+

s2

2
, s+

s2

2
) no caso 2D,

em que, o operador projeção elíptica é definido por

Ph : H1
0 (Ω) −→ Sr

h (Ω)
v 7−→ Phv, tal que (∇Phv −∇v,∇χ) = 0, ∀χ ∈ Sr

h (Ω) .

Caso Unidimensional. Na Figura 1 exibimos o erro E(h, τ) em função de τ e h para as fronteiras
1, 2 e 3. Em ambos os casos, observamos que a ordem de convergência é aproximadamente 2, e
portanto, está de acordo com (6). Na Figura 2, temos as soluções numéricas Un para cada passo
de tempo da discretização temporal de [0, T ]. Utilizamos h = 2−3, τ = 2−5 e, da esquerda para a
direita, consideramos as fronteiras 1, 2 e 3.

10-4 10-3 10-2 10-1

=

10-7

10-5

10-3

E
(=

;=
)

1

2

Front.	1
Front.	2
Front.	3

10-4 10-3 10-2 10-1
h

10-7

10-5

10-3

E
(h

;h
3
=
2
)

1

2

Front.	1
Front.	2
Front.	3

Figura 1: Problema não homogêneo 1D. Convergência do erro no tempo e espaço. Fonte: dos autores.
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Figura 2: Problema homogêneo 1D. {Un}Nn=0, com h = 2−3, τ = 2−5 e front. 1, 2 e 3. Fonte: dos autores.

Caso Bidimensional. A Figura 3 mostra o estudo do erro no tempo e no espaço. Assim como no
caso unidimensional, os resultados estão de acordo com o estudo teórico. Na Figura 4, apresentamos
a solução numérica Un nos tempos t0, tN

2
e tN , com N = 64, referente à fronteira 1.

10-2 10-1

=

10-5

10-4

10-3

10-2

E
(=

;=
)

1

2

Front.	1
Front.	2
Front.	3

10-2 10-1
h

10-5

10-4

10-3

10-2

E
(h

;h
3
=
2
)

1

2

Front.	1
Front.	2
Front.	3

Figura 3: Problema não homogêneo 2D. Convergência do erro no tempo e espaço. Fonte: dos autores.

Figura 4: Problema homogêneo 2D. Solução Numérica U0 (à esquerda), U
N
2 (centro) e UN (à direita),

com N = 64, τ = 1/64, h = 2−
7
2 e fronteira 1. Fonte: dos autores.

5 Investigações Adicionais

Necessidade da Hipótese k′(t) < 0

Essa hipótese é essencial tanto para a existência e unicidade da solução do modelo quanto para
a obtenção das estimativas de erro das soluções aproximadas, conforme observado em [3]. Assim
sendo, surge um questionamento natural, o que acontece quando essa condição não é satisfeita?

A Fronteira 4, definida a seguir, tem como propósito investigar numericamente a relevância do
sinal de k′ na estimativa de erro dada em (6). Para T ∈]0, 4

10 [, k satisfaz as hipóteses em (H1).
Contudo, para T ∈ [ 4

10 , 1], a condição k′(t) < 0 nem sempre é satisfeita.
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Front. 4: Ω =]− 1, 1[ no 1D, Ω =]− 1, 1[×]− 1, 1[ no 2D e k(t) = 1 + 1
8

(
cos(2π(t+ 0, 1))− 1

)
.

As Tabelas 1 e 2 apresentam o estudo do erro espacial considerando a fronteira 4 para diferentes
valores de T . Como pode ser visto nos resultados apresentados, a condição imposta sobre k′(t) é
de fato relevante. Isso é ilustrado no exemplo em questão, uma vez que o erro não se comportou
da mesma forma que nas fronteiras 1, 2 e 3 para os casos em que T é maior do que 0, 4.

Tabela 1: Problema não homogêneo 1D. Estudo do erro no espaço, E(h, τ) com τ = h
3
2 , para a front. 4.

T=0,3 T=0,5 T=0,8 T=1
h Erro Taxa Erro Taxa Erro Taxa Erro Taxa

2−03 5, 91e− 3 − 7, 28e− 3 − 8, 50e− 2 − 1, 23e− 1 −
2−04 1, 60e− 3 1, 8778 1, 81e− 3 2, 0067 7, 44e− 2 0, 1927 1, 10e− 1 0, 1614
2−05 4, 03e− 4 1, 9954 4, 53e− 4 2, 0008 7, 11e− 2 0, 0656 1, 07e− 1 0, 0371
2−06 1, 01e− 4 1, 9983 1, 13e− 4 2, 0002 7, 24e− 2 −0, 0271 1, 07e− 1 0, 0093
2−07 2, 53e− 5 1, 9972 2, 83e− 5 2, 0001 7, 28e− 2 −0, 0064 1, 06e− 1 0, 0022
2−08 6, 32e− 6 1, 9996 7, 07e− 6 2, 0000 7, 28e− 2 −0, 0012 1, 06e− 1 0, 0005
2−09 1, 58e− 6 1, 9995 3, 54e− 6 0, 9984 7, 29e− 2 −0, 0018 1, 06e− 1 0, 0001
2−10 3, 95e− 7 1, 9999 3, 21e− 6 0, 1407 7, 29e− 2 0, 0000 1, 06e− 1 0, 0000
2−11 9, 91e− 8 1, 9960 3, 17e− 6 0, 0161 7, 29e− 2 0, 0000 1, 06e− 1 0, 0000
2−12 3, 40e− 7 −1, 7781 3, 19e− 6 −0, 0078 7, 25e− 2 0, 0091 1, 06e− 1 0, 0100

Tabela 2: Problema não homogêneo 2D. Estudo do erro no espaço, E(h, τ) com τ = h
3
2 , para a front. 4.

T=0,3 T=0,5 T=0,8 T=1
h Erro Taxa Erro Taxa Erro Taxa Erro Taxa

2−
5
2 9, 65e− 3 − 1, 08e− 2 − 6, 46e− 2 − 1, 46e− 1 −

2−
7
2 2, 34e− 3 2, 0440 2, 70e− 3 2, 0067 8, 25e− 2 −0, 3517 1, 28e− 1 0, 1883

2−
9
2 5, 96e− 4 1, 9731 6, 73e− 4 2, 0037 8, 65e− 2 −0, 0673 1, 25e− 1 0, 0403

2−
11
2 1, 49e− 4 1, 9950 1, 68e− 4 2, 0008 8, 52e− 2 0, 0209 1, 24e− 1 0, 0097

2−
13
2 3, 74e− 5 1, 9976 4, 20e− 5 2, 0001 8, 56e− 2 −0, 0059 1, 24e− 1 0, 0023

2−
15
2 9, 36e− 6 1, 9996 1, 05e− 5 2, 0000 8, 61e− 2 −0, 0084 1, 24e− 1 0, 0005

Perda da Ordem de Convergência no Espaço
O objetivo desta subseção é investigar a perda da ordem de convergência no espaço na estimativa

de erro do problema totalmente discreto. Destacamos que, para uma variedade de problemas
parabólicos, veja [5] e suas referências, a convergência ótima na norma de H1

0 (Ω) é O
(
hs−1

)
.

No entanto, a estimativa (6) obtida em [3] apresenta ordem de convergência O
(
hs−2

)
no espaço.

No caso de Hermite cúbico como base do espaço aproximado, as ordens O(hs−1) e O(hs−2) se
traduzem em O(h3) e O(h2), respectivamente. Mostraremos que essa perda de convergência se

deve à presença do termo
d∑

j=1

yj∆(∂v(y,t)∂yj
) em (2).

Para ilustrar numericamente a perda de convergência, implementamos o problema sem o termo
mencionado e exibimos os resultados de erro no espaço para casos uni e bidimensionais. A Figura
5 confirma uma ordem de convergência O(h3) no espaço para o modelo simplificado, enquanto o
problema original tem uma ordem de convergência de O(h2). Esses resultados destacam que a
perda de ordem de convergência é devida ao termo removido do modelo.
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=
2
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10-2 10-1
h

10-7
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E
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;h
3
=
2
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1

3

Front.	1
Front.	2
Front.	3

Figura 5: Problema simplificado não homogêneo. Convergência do erro (1D e 2D). Fonte: dos autores.

6 Considerações Finais
Neste estudo, realizamos simulações numéricas de uma equação do tipo BBM com fronteira

móvel. A BBM é uma evolução da equação de Korteweg-de Vries, que modela ondas de pequena
amplitude que se propagam em uma única direção. Ao abordar a BBM em um domínio não
cilíndrico, buscamos fornecer um estudo mais realístico e abrangente do modelo.

Implementamos o esquema totalmente discreto nos casos uni e bidimensional, com polinômios
de Hermite cúbicos como base para o espaço aproximado. Ilustramos os resultados de estimativa
de erro no tempo e espaço e constatamos que estes foram consistentes com o estudo teórico. Por
fim, investigamos numericamente dois aspectos relacionados à solução aproximada do modelo em
estudo. Primeiro, confirmamos a relevância da condição k′(t) < 0. Segundo, mostramos que a
perda da ordem de convergência no espaço está relacionada a uma parcela específica do modelo.
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