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Mixed Virtual Element-Based Numerical Schemes for
Nonlinear Problems in Porous Media Flow
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Abstract. In this talk, we present mixed virtual element-based formulations for some nonlinear
problems in porous media flow. The aim of this work is to demonstrate the capacity of these
numerical schemes to approximate the variables of interest adequately. In particular, we examine
the Brinkman and Navier-Stokes-Brinkman flows. The systems are formulated in terms of a pseu-
dostress tensor and the use of Lagrange multipliers. The well-posedness of the associated augmented
formulation, along with a priori error bounds for the discrete scheme, has both been established.
Finally, we provide some numerical results that confirm the theoretical results.
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1 Introduction

We give some notation to be used along the paper, including those already employed above.
Firstly, denoting by I the identity matrix of R2×2, and given τ := (τij), ζ := (ζij) ∈ R2×2, we write

as usual tr(τ ) :=

2∑
i=1

τii, τd := τ − 1

2
tr(τ ) I , and τ : ζ :=

2∑
i,j=1

τijζij , which corresponds,

respectively, to the trace and the deviator tensor of τ , and to the tensorial product between τ and ζ.
Furthermore, given a generic scalar functional space M, we let M and M be its vector and tensorial
counterparts, respectively, whose norms and seminorms are denoted exactly as those of M. On the
other hand, letting div (resp. rot) be the usual divergence operator div (resp. rotational operator
rot) acting along the rows of a given tensor, we recall that the space H := H0(div;O) :=

{
τ ∈

H(div;O) :

∫
O

tr τ = 0
}
, and X := L2

tr(Ω) :=
{
s ∈ L2(Ω) : tr s = 0

}
, equipped with the usual

norm are Hilbert spaces and recall that holds the decomposition H(div;O) = H0(div;O) ⊕ R I .
Now, we introduce suitable virtual element subspaces for V and H, together to their respective
approximation properties. To this end, we will assume the basic assumptions on meshes that
are standard in this context (cf. [2]), that is, given {Th}h>0 a family of decompositions of Ω in
polygonal elements K, and given a particular K ∈ Th, we denote its barycenter, diameter, and
number of edges by xK , hK , and dK , respectively, and define, as usual, h := max{hK : K ∈ Th}.
In addition, we assume that there exists a constant CT > 0 such that for each decomposition Th
and for each K ∈ Th there hold:

a) the ratio between the shortest edge and the diameter hK of K is bigger than CT , and

b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K.
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In the following, we denote by ΠO
k : L2(O) → Pk(O) the L2(O)-orthogonal projection onto the

space Pk(O), for any O ⊆ R2 and k ≥ 0. In this sense, O can be a line segment or polygon of
Th. In addition, we will make use of a tensorial version of the aforementioned projector, which
is denoted by Π0

k. Given K ∈ Th and an integer k ≥ 0, we first let RK
k : H1(K) → Pk+1(K) be

the projection operator defined for each ψ ∈ H1(K) as the unique polynomial RK
k (ψ) ∈ Pk+1(K)

satisfying (cf. [1]) ∫
K

∇RK
k (ψ) · ∇q =

∫
K

∇ψ · ∇q ∀ q ∈ Pk+1(K) ,∫
∂K

RK
k (ψ) =

∫
∂K

ψ .

(1)

Furthermore, we now consider the finite-dimensional subspace of C(∂K) given by

Bk(∂K) :=
{
ψ ∈ C(∂K) : ψ|e ∈ Pk+1(e) , ∀ edge e ⊆ ∂K

}
, (2)

define the following local virtual element space (see, e.g. [1])

V K
h :=

{
ψ ∈ H1(K) : ψ|∂K ∈ Bk(∂K) , ∆ψ ∈ Pk+1(K) ,

and
∫
K

{
RK

k (ψ)− ψ
}
q = 0 ∀ q ∈ B̃k(K)

}
,

(3)

Also, for each K ∈ Th and k ≥ 0, we introduce the local virtual space HK
k as follows

HK
k :=

{
τ ∈ H(div;K) ∩H(rot;K) : τn|e ∈ Pk(e) ∀ edge e ∈ ∂K,

div (τ ) ∈ Pk(K) , and rot (τ ) ∈ Pk−1(K)
}
,

(4)

Then, we can define the global space V h
k and Hh

k , for V and H, respectively, whereas for X we can
chosse the global space Xh

k by using of piecewise polynomials. The approximation properties can
be found in [4]

2 Flow of Non-Newtonian Fluids in Porous Media
Let Ω be a bounded domain in R2 with polygonal boundary Γ. Given a volume force f ∈ L2(Ω)

and a Dirichlet datum g ∈ H1/2(Γ), we seek a tensor σ (pseudostress), a vector field u (velocity)
and a scalar field p (pressure), such that

σ = µ(|∇u|)∇u− p I in Ω , αu− divσ = f in Ω ,

divu = 0 in Ω , u = g on Γ , and
∫
Ω

p = 0 ,
(5)

where µ : R+ → R is the nonlinear kinematic viscosity function of the fluid, and α > 0 is a constant
approximation of the viscosity divided by the permeability. In what follows, let µij : R

2×2 → R be
the mapping given by µij := µ(|r|)rij for each r := (rij) ∈ R2×2 and for each i, j ∈ {1, 2}. Then,
throughout this paper we assume that µ is of class C1 and that there exist γ0, α0 > 0 such that
for each r := (rij), s := (sij) ∈ R2×2, there hold

|µij(r)| ≤ γ0|r|, and
∣∣∣∣ ∂

∂rkl
µij(r)

∣∣∣∣ ≤ γ0 ∀ i, j, k, l ∈ {1, 2}, (6)

and
2∑

i,j,k,l=1

∂

∂rkl
µij(r)sijskl ≥ α0|s|2. (7)
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2.1 Continuous Scheme
Now, as was explained in [3], using the incompressibility condition to eliminate the pressure,

and introducing the auxiliary unknown t := ∇u in Ω, we rewrite (5) as follows:

t = ∇u in Ω, σd = µ(|t|)t in Ω , αu − divσ = f in Ω ,

tr(t) = 0 in Ω , u = g on Γ and
∫
Ω

tr(σ) = 0 .
(8)

We recall that the pressure can be obtained using the formula p = − 1
2 tr(σ) in Ω . Note from

the fourth and last equation of (8) that t and σ must belong to X and H, respectively. Then,
proceeding as in [3, Section 2.2], that is, testing the first two equations of (8) by suitable test
functions, integrating by parts, using the Dirichlet conditions for u, the fact that the velocity
can be replaced from the third equation of (8) as u = 1

α

{
f + div(σ)

}
, and adding the following

redundant term
κ

∫
Ω

{
σd − µ(|t|)t

}
: τd = 0 ∀ τ ∈ H ,

with κ a positive parameter to be specified later, we arrive at the augmented variational formula-
tion: Find (t,σ) ∈ X ×H such that

[A(t,σ), (s, τ )] = [F, (s, τ )] ∀ (s, τ ) ∈ X ×H , (9)

where A : X ×H → (X ×H)′ and F ∈ (X ×H)′ are given by

[A(t,σ), (s, τ )] := [A(t), s− κτd] −
∫
Ω

s : σd +

∫
Ω

t : τd + κ

∫
Ω

σd : τd

+
1

α

∫
Ω

divσ · div τ ,

(10)

and
[F, (s, τ )] := − 1

α

∫
Ω

f · div τ + ⟨τn,g⟩ , (11)

respectively, where ⟨·, ·⟩ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). In addition,
the analysis of the continuous formulation (9) is based on the results of the nonlinear analysis (cf.
[3, Section 2.2]). In this way, the well-posedness of the variational formulation (9) is established
by the following theorem.

Theorem 2.1. Assume that f ∈ L2(Ω),g ∈ H1/2(Γ), and that given δ ∈
(
0, 2

γ0

)
, the parameter

κ lies in
(
0, 2δα0

γ0

)
. Then, there exists a unique (t,σ) ∈ X ×H solution of (16). Moreover, there

exists a positive constant C, depending only on Ω, α0, γ0, κ and α, such that

∥(t,σ)∥X×H ≤ C
{
∥f∥0,Ω + ∥g∥1/2,Γ

}
.

Proof. See [3, Theorem 2.1]).

2.2 Discrete Scheme
The mixed virtual element scheme associated with the augmented formulation (9) reads: Find

(th,σh) ∈ Xh
k ×Hh

k such that

[Ah(th,σh), (sh, τh)] = [F, (sh, τh)] ∀ (sh, τh) ∈ Xh
k ×Hh

k . (12)
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where Ah is the computable discrete nonlinear operator approximating defined by

[Ah(th,σh), (sh, τh)] :=
∑

K∈Th

[A(th), sh − κ(Π0
k(τh))

d]−
∫
K

sh : (Π0
k(σh))

d +

∫
K

th : (Π0
k(τh))

d

+ κ

∫
K

(Π0
k(σh))

d : (Π0
k(τh))

d +
1

α

∫
K

divσh · div τh + SK(σh −Π0
k(σh), τh −Π0

k(τh)) ,

(13)
where SK : HK

k ×HK
k → R is any symmetric and positive bilinear form verifying (see [3])

ĉ0∥ζ∥20,K ≤ SK(ζ, ζ) ≤ ĉ1∥ζ∥20,K ∀ ζ ∈ HK
k , (14)

with constants ĉ0, ĉ1 > 0 depending only on CT . The unique solvability and stability of the actual
Galerkin scheme (12) is established now

Theorem 2.2. Assume that given δ ∈
(
0,

2

γ0

)
, the parameter κ lies in

(
0,

2δα0

γ0

)
. Then, there

exists a unique (th,σh) ∈ Xh
k × Hh

k solution of (12), and there exists a positive constant C,
independent of h, such that

∥(th,σh)∥X×H ≤ C
{
∥f∥0,Ω + ∥g∥1/2,Γ

}
.

Proof. [3, Theorem 3.1]).

3 Models with Nonselenoidal Velocity
We consider the Navier-Stokes-Brinkman problem with nonsolenoidal velocity, which is given

by the following system of partial differential equations

−µ∆u + (∇u)u + ∇ p−Ku = f in Ω , divu = g in Ω ,

u = uD on Γ and
∫
Ω

p = 0 ,
(15)

where the unknowns are the velocity u and the pressure p of a fluid occupying the region Ω. In
addition, µ > 0 is the dynamic fluid viscosity, K is a tensor that represents the permeability of the
porous medium, f and g are given data that represent external body forces and sources and/or
skins in Ω, respectively, and uD are boundary data.

3.1 Continuous Scheme
Recalling the variational formulation proposed in [6, Section 2] and using minor changes caused

by the tensor K, we arrive at the following continuous scheme (with positive parameters κ1 and
κ2 to be specified later): Find (σ,u) ∈ H × V such that

A ((σ,u), (τ ,v)) + B (u ; (σ,u), (τ ,v)) = F (τ ,v) , (16)

for all (τ ,v) ∈ H × V , where the forms A and B are defined, respectively, as

A ((σ,u), (τ ,v)) :=

∫
Ω

σd : τd + µ

∫
Ω

gK−1 u · div τ + µ

∫
Ω

K−1divσ · div τ

+κ1 µ

∫
Ω

∇u : ∇v − κ1

∫
Ω

σd : ∇v + κ2

∫
Γ

u · v ,
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and
B(u ; (σ,u), (τ ,v)) :=

∫
Ω

(u⊗ u)d :
{
τ − κ1 ∇v

}
In turn, the bounded functional F : H × V → R is given by

F(τ ,v) := −µ
∫
Ω

Kf · div τ − µ

2

∫
Ω

g tr τ + µ⟨τn,uD⟩+ κ1µ

2

∫
Ω

g divv + κ2

∫
Γ

uD · v.

where ⟨·, ·⟩ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). Now, the analysis of the
continuous formulation (16) is based on a fixed point strategy combining the classical Banach The-
orem and the Lax-Milgram Theorem. Finally, the following result establishes the well-posedness
of the scheme (16).

Theorem 3.1. Assume appropriate values for κ1 and κ2. In addition, suppose that the data f , g
and uD are sufficiently small. Then, there exists a unique (σ,u) ∈ H solution of (16) that holds

∥(σ,u)∥ ≤ C
{
∥f∥0,Ω + ∥g∥0,Ω + ∥uD∥1/2,Γ + ∥uD∥0,Γ

}
.

Proof. It is a light modification of [6, Theorem 3.4].

3.2 Discrete Scheme
Inspired by [4, 5] we get the following discrete scheme : Find (σh,uh) ∈ Hh × Vh such that

Ah ((σh,uh), (τh,vh)) + Bh (uh ; (σh,uh), (τh,vh)) = Fh (τh,vh) , (17)

for all (τh,vh) ∈ Hh × Vh, where the forms Ah and Bh are defined, respectively, as

Ah ((σh,uh), (τh,vh)) :=
∑

K∈Th

∫
K

Π0
k(σh)

d : Π0
k(τh)

d + SK,d(σh −Π0
k(σh), τh −Π0

k(τh))

+κ1 µ

∫
K

∇Π∇
k (uh) : ∇Π∇

k (vh) + SK,∇(uh −Π∇
k (uh),vh −Π∇

k (vh))

+µ

∫
K

gK−1 Π0
k(uh) · div τh + µ

∫
K

K−1divσh · div τh

−κ1
∫
K

Π0
k(σh)

d : Π0
k(∇vh) + κ2

∫
∂K

uh · vh ,

and

Bh(uh ; (σh,uh), (τh,vh)) :=
∑

K∈Th

∫
K

(Π0
k(uh)⊗Π0

k(uh))
d :
{
Π0

k(τh)− κ1 Π
0
k(∇vh)

}
.

In turn, the bounded functional Fh : Hh × Vh → R is given by

Fh(τh,vh) :=
∑

K∈Th

−µ
∫
K

KΠ0
k(f) · div τh − µ

2

∫
K

g tr τh + µ⟨τhn,uD⟩

+
κ1µ

2

∫
K

g divvh + κ2

∫
∂K

uD · vh.

Now, the analysis of (16) again is based on a fixed point strategy combining the classical Banach
Theorem and the Lax-Milgram Theorem, but now combined with strategies taken of [4, 5]. Finally,
the following result establishes the well-posedness of the scheme (17).
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Theorem 3.2. Let (σ,u) ∈ H × V and (σh,uh) ∈ Hh
k × V h

k be the unique solutions of the
continuous and discrete schemes (16) and (17), respectively. Assume that for integers r ∈ [1, k+1],
and s ∈ [2, k+1], there hold σ|K ∈ Hr(K), divσ|K ∈ Hr(K), u|K ∈ Hs(K),and g|K = divu|K ∈
Hs(K), for each K ∈ Th. Then, there exists a positive constant C, independent of h, such that

∥(σ,u)− (σh,uh)∥ ≤ C hmin{r,s−1,m−1}
{ ∑

K∈Th

(
|σ|2r,K + |divσ|2r,K + |u|2s,K + |divu|2s,K

)}
+C hs−1

{ ∑
K∈Th

|u|4s−1,4,K + |divu|4s−1,4,K

}1/4

.

Proof. This follows from Strang-type estimates and the approximation properties of the virtual
spaces involved (See [4, Theorem 5.3]) .

4 Numerical Results

We present two numerical experiments illustrating the performance of the augmented mixed
virtual element scheme (12). In Example 1 we take the unit square Ω := (0, 1)2, set α = 1,
and consider the nonlinear viscosity µ given by the Carreau law, that is µ(s) := 2 + (1 +
s2)−1/6 ∀ s ≥ 0 . In addition, we choose the data f and g so that the exact solution is given by

u(x) :=

( − cos(πx1) sin(πx2)

sin(πx1) cos(πx2)

)
and p(x) := x21−x22 for all x := (x1, x2)

t ∈ Ω. In Example

2 we take the L-shaped domain Ω := (−1,−1)2 \ [0, 1]2, set again α = 1, and consider the nonlinear
viscosity given by µ(s) := 1

2 + 1
2 (1 + s2)−1/4 ∀ s ≥ 0. Then, we choose the data f and g so

that the exact solution is given by u(x) :=

(
(1 + x1 − exp(x1))(1− cos(x2))

(1− exp(x1))(sin(x2)− x2)

)
and p(x) :=

(x21 + x22)
1/3 − p0 for all x := (x1, x2)

t ∈ Ω, where p0 ∈ R is such that
∫
Ω
p = 0. Note in this

example that the partial derivatives of p, and hence, in particular divσ, are singular at the origin.
More precisely, because of the power 1/3, there holds σ ∈ H5/3−ϵ(Ω) and divσ ∈ H2/3−ϵ(Ω) for
each ϵ > 0.

Table 1: Example 1, history of convergence using quadrilaterals.
k h N e(t) r(t) e0(σ) r0(σ) ediv(σ) rdiv(σ) e(u) r(u) e(p) r(p) e(σ⋆) r(σ⋆)

0.0461 8716 1.18e-1 −− 3.16e-1 −− 3.79e+1 −− 2.73e-2 −− 2.84e-2 −− 1.42e-0 −−
0.0359 14356 9.16e-2 1.00 2.46e-1 1.00 3.79e+1 0.00 2.09e-2 1.06 2.16e-2 1.08 1.10e-0 1.00

0 0.0183 54561 4.68e-2 1.00 1.26e-1 1.00 3.79e+1 0.00 1.05e-2 1.03 1.06e-2 1.06 5.64e-1 1.00
0.0135 101281 3.43e-2 1.00 9.21e-2 1.00 3.79e+1 0.00 7.67e-3 1.01 7.80e-3 1.00 4.14e-1 1.00
0.0101 179841 2.58e-2 1.00 6.90e-2 1.00 3.79e+1 0.00 5.74e-3 1.01 5.84e-3 1.01 3.10e-1 1.00
0.0461 28456 2.72e-3 −− 7.56e-3 −− 1.40e-0 −− 5.81e-4 −− 1.41e-3 −− 3.56e-2 −−
0.0359 46936 1.64e-3 2.02 4.53e-3 2.04 1.09e-0 1.00 3.50e-4 2.02 7.79e-4 2.35 2.15e-2 2.00

1 0.0183 178817 4.25e-4 2.01 1.16e-3 2.03 5.57e-1 1.00 9.12e-5 2.01 1.68e-4 2.29 5.64e-3 1.99
0.0135 332161 2.28e-4 2.01 6.22e-4 2.02 4.09e-1 1.00 4.90e-5 2.00 8.38e-5 2.23 3.04e-3 2.00
0.0101 590081 1.28e-4 2.01 3.48e-4 2.01 3.07e-1 1.00 2.75e-5 2.00 4.46e-5 2.19 1.71e-3 2.00
0.0461 56771 4.28e-5 −− 1.39e-4 −− 3.57e-2 −− 8.52e-6 −− 3.33e-5 −− 1.89e-3 −−
0.0359 93691 2.00e-5 3.03 6.46e-5 3.06 2.16e-2 2.00 4.00e-6 3.00 1.47e-5 3.24 9.09e-4 2.92

2 0.0183 357281 2.64e-6 3.02 8.56e-6 3.02 5.68e-3 1.99 5.35e-7 3.00 1.85e-6 3.09 1.24e-4 2.97
0.0135 663841 1.04e-6 3.01 3.36e-6 3.01 3.06e-3 1.99 2.11e-7 3.00 7.07e-7 3.10 4.90e-5 3.00
0.0101 1179521 4.36e-7 3.02 1.41e-6 3.02 1.72e-3 2.00 8.89e-8 3.00 2.92e-7 3.07 2.07e-5 3.00
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Table 2: Example 2, history of convergence using hexagons.
k h N e(t) r(t) e0(σ) r0(σ) ediv(σ) rdiv(σ) e(u) r(u) e(p) r(p) e(σ⋆) r(σ⋆)

0.0866 8382 2.26e-2 −− 4.02e-2 −− 1.56e-0 −− 6.62e-3 −− 2.41e-2 −− 1.18e-1 −−
0.0462 28668 1.20e-2 1.01 2.10e-2 1.03 1.56e-0 0.00 3.49e-3 1.02 1.25e-2 1.04 7.73e-2 0.68

0 0.0315 61050 8.13e-3 1.02 1.42e-2 1.02 1.56e-0 0.00 2.38e-3 1.00 8.48e-3 1.02 5.98e-2 0.67
0.0247 98868 6.38e-3 1.00 1.11e-2 1.02 1.56e-0 0.00 1.87e-3 1.00 6.63e-3 1.02 5.16e-2 0.61
0.0204 145758 5.25e-3 1.01 9.16e-3 1.01 1.56e-0 0.00 1.54e-3 0.99 5.45e-3 1.01 4.60e-2 0.58
0.0866 25142 5.93e-4 −− 1.50e-3 −− 1.15e-1 −− 1.86e-4 −− 9.84e-4 −− 4.87e-2 −−
0.0462 86000 1.84e-4 1.86 5.45e-4 1.61 7.66e-2 0.65 5.38e-5 1.97 3.65e-4 1.58 3.24e-2 0.65

1 0.0315 183146 9.66e-5 1.68 2.96e-4 1.60 5.98e-2 0.65 2.52e-5 1.98 1.99e-4 1.59 2.63e-2 0.54
0.0247 296600 6.30e-5 1.77 2.02e-4 1.59 5.16e-2 0.61 1.55e-5 2.01 1.36e-4 1.57 2.26e.2 0.62
0.0204 437270 4.48e-5 1.76 1.49e-4 1.55 4.52e-2 0.68 1.06e-5 1.99 1.01e-4 1.53 2.00e-2 0.63
0.0866 48419 9.62e-5 −− 4.32e-4 −− 5.08e-2 −− 4.09e-6 −− 2.98e-4 −− 3.35e-2 −−
0.0462 165627 3.32e-5 1.69 1.58e-4 1.60 3.41e-2 0.63 7.64e-7 2.67 1.09e-4 1.59 2.31e-2 0.59

2 0.0315 352723 2.01e-5 1.31 9.18e-5 1.42 2.73e-2 0.58 2.65e-7 2.77 6.33e-5 1.43 1.85e-2 0.58
0.0247 571227 1.24e-5 2.00 6.32e-5 1.55 2.36e-2 0.59 1.50e-7 2.34 4.38e-5 1.53 1.61e-2 0.56
0.0204 842174 9.85e-6 1.19 4.76e-5 1.46 2.10e-2 0.61 8.41e-8 3.00 3.29e-5 1.47 1.44e-2 0.58

5 Conclusions
This work highlights the effectiveness of mixed virtual element methods for modeling porous

media, particularly in nonlinear settings. Their flexible structure supports adaptive strategies that
enhance both accuracy and computational efficiency by locally refining the mesh or increasing the
approximation order based on solution features, as demonstrated in [7].
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