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Abstract. In this talk, we present mixed virtual element-based formulations for some nonlinear
problems in porous media flow. The aim of this work is to demonstrate the capacity of these
numerical schemes to approximate the variables of interest adequately. In particular, we examine
the Brinkman and Navier-Stokes-Brinkman flows. The systems are formulated in terms of a pseu-
dostress tensor and the use of Lagrange multipliers. The well-posedness of the associated augmented
formulation, along with a priori error bounds for the discrete scheme, has both been established.
Finally, we provide some numerical results that confirm the theoretical results.
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1 Introduction

We give some notation to be used along the paper, including those already employed above.
Firstly, denoting by I the identity matrix of R**?, and given 7 := (7;;), ¢ := ({i;) € R**?, we write
2 2
1
as usual tr(r) := ;Tii, 74 =7 — itr(T)H’ and T :¢ = Mz;l 7i;Gij, which corresponds,
respectively, to the trace and the deviator tensor of 7, and to the tensorial product between 7 and (.
Furthermore, given a generic scalar functional space M, we let M and M be its vector and tensorial
counterparts, respectively, whose norms and seminorms are denoted exactly as those of M. On the
other hand, letting div (resp. rot) be the usual divergence operator div (resp. rotational operator

rot) acting along the rows of a given tensor, we recall that the space H := Hy(div; O) := {T €

H(div; 0) : /

trv = O} ;and X :=L&(Q) := {s€L?*Q): trs=0}, equipped with the usual
o

norm are Hilbert spaces and recall that holds the decomposition H(div; O) = Hy(div; O) @ RI.
Now, we introduce suitable virtual element subspaces for V' and H, together to their respective
approximation properties. To this end, we will assume the basic assumptions on meshes that
are standard in this context (cf. [2]), that is, given {7 }n>0 a family of decompositions of Q in
polygonal elements K, and given a particular K € 7T,, we denote its barycenter, diameter, and
number of edges by xx, hx, and dg, respectively, and define, as usual, h := max{hg : K € Tp}.
In addition, we assume that there exists a constant C+ > 0 such that for each decomposition 7,
and for each K € T}, there hold:

a) the ratio between the shortest edge and the diameter hy of K is bigger than Cr, and

b) K is star-shaped with respect to a ball B of radius Crhg and center xp € K.
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In the following, we denote by II¢ : L2(O) — Px(O) the L?(0)-orthogonal projection onto the
space Pr(0), for any O C R? and k > 0. In this sense, O can be a line segment or polygon of
Tr. In addition, we will make use of a tensorial version of the aforementioned projector, which
is denoted by IT. Given K € T, and an integer k > 0, we first let RE : H'(K) — Pj41(K) be
the projection operator defined for each ¢ € H'(K) as the unique polynomial RE (¢)) € Pjy1(K)
satisfying (cf. [1])

/VR£‘<w>~Vq - /ww Vg e Pr(K),
RE(Y) = .

oK oK
Furthermore, we now consider the finite-dimensional subspace of C(0K) given by

By (0K) = {1/) € C(OK): ol € Prsr(e), VedgeeC aK} : 2)
define the following local virtual element space (see, e.g. [1])

VE = {¢ EHNK): tlox € BLOK), A ePr(K),

and / {RE@W) —v}g =0 qugk(K)},
K
Also, for each K € T;, and k > 0, we introduce the local virtual space H ,ﬁ( as follows

HE = {T € H(div; K) NH(rot; K) :  7n|. € Pir(e) Vedge e € K,

(4)
div(7) € P(K), and rot(7)e€ Pk71<K)}7

Then, we can define the global space th and H ,?, for V and H, respectively, whereas for X we can
chosse the global space X ,}C’ by using of piecewise polynomials. The approximation properties can
be found in [4]

2 Flow of Non-Newtonian Fluids in Porous Media

Let 2 be a bounded domain in R? with polygonal boundary I'. Given a volume force f € L%(Q)
and a Dirichlet datum g € H'/?(I"), we seek a tensor o (pseudostress), a vector field u (velocity)
and a scalar field p (pressure), such that

o=p(|Vu|)Vu—pI in Q, au—dive=f in Q,
divu=0 in @, u=g on I', and /p:O, (5)
Q

where 1 : RT — R is the nonlinear kinematic viscosity function of the fluid, and o > 0 is a constant
approximation of the viscosity divided by the permeability. In what follows, let p;; : R?*2 — R be
the mapping given by p;; := p(|r|)r;; for each r := (r;;) € R?*? and for each i,j € {1,2}. Then,
throughout this paper we assume that p is of class C' and that there exist g, a9 > 0 such that
for each r := (r;;),s := (s;;) € R**?, there hold

S Yo Vivjvkvle{]-vZ}v (6)

0
s < soll, and |52
and

9

E E. pij(r)sigsk > aols|®. (7)
L Tkl
1,5,k l=1
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2.1 Continuous Scheme

Now, as was explained in [3|, using the incompressibility condition to eliminate the pressure,
and introducing the auxiliary unknown t := Vu in Q, we rewrite (5) as follows:

t = Vu in Q, od = u(th)t in Q, oau —dive = f in Q,

8
tr(t) = 0 in €, u=g on I' and /tr(a) = 0. ®)
Q

We recall that the pressure can be obtained using the formula p = —3tr(o) in €. Note from
the fourth and last equation of (8) that t and o must belong to X and H, respectively. Then,
proceeding as in [3, Section 2.2], that is, testing the first two equations of (8) by suitable test
functions, integrating by parts, using the Dirichlet conditions for u, the fact that the velocity
can be replaced from the third equation of (8) as u = 1{f + div(c)}, and adding the following
redundant term

n/{o-d—u(|t|)t}:7'd =0 VTreH,
Q

with k a positive parameter to be specified later, we arrive at the augmented variational formula-
tion: Find (t,0) € X x H such that

[A(t,0),(s,7)] = [F,(s,T)] V(s,7)eX xH, (9)

where A : X x H— (X x H) and F € (X x H)' are given by

) " (10)
+—/divo’~div7‘,
a Jo
and .
[F,(s,7)] = f—/f~div7' + (tn,g), (11)
@ Jo

respectively, where (-, -) stands for the duality pairing between H=1/2(T") and H'/2(I"). In addition,
the analysis of the continuous formulation (9) is based on the results of the nonlinear analysis (cf.
[3, Section 2.2]). In this way, the well-posedness of the variational formulation (9) is established
by the following theorem.

Theorem 2.1. Assume that f € L*(Q),g € H/?(T), and that given § € (0, ,720), the parameter

k lies in (0, 2‘;%) Then, there exists a unique (t,0) € X x H solution of (16). Moreover, there

exists a positive constant C, depending only on 2, ag, Y9, x and «, such that

It,0)|lxxz < C{l[flloe + llgllij2r}

Proof. See [3, Theorem 2.1]). O

2.2 Discrete Scheme

The mixed virtual element scheme associated with the augmented formulation (9) reads: Find
(th,on) € X' x H} such that

[An(tn.on), (sh,7h)] = [F,(sn, 7)) V (s, Tn) € X X Hy . (12)
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where A}, is the computable discrete nonlinear operator approximating defined by

At o), (1) = 3 (A, 50 — s (7)) — / sh: (T(o)% + /K t + (TT9 (m,))¢

KET, . K
+ K / (T (o)) : (T2 (1)) + S / divoy, -divr, + S8(e, — (o), 7 — TY(T4)),
K K
(13)
where S¥ : HE x HE — R is any symmetric and positive bilinear form verifying (see [3])
allKllfe < %€ < allKllex  Y¢eHS, (14)

with constants ¢y, ¢; > 0 depending only on C7. The unique solvability and stability of the actual
Galerkin scheme (12) is established now

250[0

Yo
exists a unique (tp,o) € X' x HP solution of (12), and there exists a positive constant C,
independent of h, such that

2
Theorem 2.2. Assume that given 6 € <0, >, the parameter r lies in <0, > Then, there
Yo

[(th, on)llxxm < C{Hf

0,0 + ||g||1/2,r} .

Proof. [3, Theorem 3.1]). O

3 Models with Nonselenoidal Velocity

We consider the Navier-Stokes-Brinkman problem with nonsolenoidal velocity, which is given
by the following system of partial differential equations

—uAu+ (Vu)u+ Vp—Ku=f in Q, divu=g in Q,

(15)
u=up on [I' and /p:O,
Q

where the unknowns are the velocity u and the pressure p of a fluid occupying the region Q. In
addition, p > 0 is the dynamic fluid viscosity, K is a tensor that represents the permeability of the
porous medium, f and g are given data that represent external body forces and sources and/or
skins in 2, respectively, and up are boundary data.

3.1 Continuous Scheme

Recalling the variational formulation proposed in [6, Section 2] and using minor changes caused
by the tensor K, we arrive at the following continuous scheme (with positive parameters x; and
k2 to be specified later): Find (o,u) € H x V such that

A((U,u),(r,v))+B(u;(0',u),(7',v)) - .F(T,V), (16)

for all (7,v) € H x V, where the forms .4 and B are defined, respectively, as
A((o,u), (T,v)) = / R / gKtu-divr +p / K-!'dive -divr
Q Q Q

Jrnlu/Vu:Vanl/ad:Vv+/<c2/u~v,
Q Q r
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and
Blus(oww,(rov) = [(@ews {r—m V)
Q
In turn, the bounded functional 7 : H x V' — R is given by

F(r,v):= —,u/ Kf - divr — H/ gtrT+ p(rn,up) + w/ gdivv + Iig/uD V.
Q 2 Ja 2 Ja r
where (-, ) stands for the duality pairing between H~/2(T") and H/?(T"). Now, the analysis of the
continuous formulation (16) is based on a fixed point strategy combining the classical Banach The-
orem and the Lax-Milgram Theorem. Finally, the following result establishes the well-posedness
of the scheme (16).

Theorem 3.1. Assume appropriate values for k1 and ko. In addition, suppose that the data £, g
and up are sufficiently small. Then, there exists a unique (o,u) € H solution of (16) that holds

I wil < ¢l

00+ llglog + Il jz.x + fuplor}

Proof. It is a light modification of [6, Theorem 3.4]. O

3.2 Discrete Scheme
Inspired by [4, 5] we get the following discrete scheme : Find (o, up) € Hy, x V}, such that
An ((@n,un), (Th, Vi) + Bu (up s (on,an), (Th, Vi) = Fu(Th, Vi), (17)
for all (71, vp) € Hp x V3, where the forms A, and By, are defined, respectively, as
An ((Gn,an), (Th,va) == Y / (o) - (1) + 8% (an — MY (oh), 71 — TI(T4))
KeT, 7K

i u/ VITY () : VIIY (vi) + S5 (wp — ¥ (up), v — TIY (v))
K
+ 1 / gK~1! Hg(uh) ~divT, + @ / K 'div oy, - div 1y
K K

—Hl/ H%(ah)d : H%(Vvh) + Hg/ uy - vy,
K 0K

and
Bi(ap; (on,wn), (Th, V) == Y / (I} (up) @ TR (up))® < {0 (75) — 1 T (V Vi) } -
KeT VK
In turn, the bounded functional F, : H, x Vj, — R is given by

Fn(Th,vp) = Z —p/ Kﬂg(f).divrh—g/ gtr Ty + p(Tpn,up)
KeT K K

+L1M gdiVVh +I€2/ up * Vp.
2 Jk oK

Now, the analysis of (16) again is based on a fixed point strategy combining the classical Banach
Theorem and the Lax-Milgram Theorem, but now combined with strategies taken of [4, 5]. Finally,
the following result establishes the well-posedness of the scheme (17).
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Theorem 3.2. Let (o,u) € H x V and (op,u,) € H' x V' be the unique solutions of the
continuous and discrete schemes (16) and (17), respectively. Assume that for integersr € [1,k+1],
and s € 2,k +1], there hold o|g € H(K), dive|x € H(K), u|x € H*(K),and g|x = divu|x €
H*(K), for each K € T;,. Then, there exists a positive constant C, independent of h, such that

||(0',ll) . (o_}“uh)” < Chmin{r,s—l,m—l}{ Z <|0-‘27K + |diVU|E,K + \u\iK + |divu|§7K)}
Keﬂl

1/4
Z |u|§71,4,K + |div u|§71,4,K } .

+C B! {
K€7-h

Proof. This follows from Strang-type estimates and the approximation properties of the virtual
spaces involved (See [4, Theorem 5.3]) . O

4 Numerical Results

We present two numerical experiments illustrating the performance of the augmented mixed
virtual element scheme (12). In Example 1 we take the unit square Q := (0,1)2, set a = 1,
and consider the nonlinear viscosity p given by the Carreau law, that is u(s) = 2 + (1 +
52)*1/6 V s > 0. In addition, we choose the data f and g so that the exact solution is given by

— cos(mxy) sin(mwag)

u(x) = and p(x) := 27 —23 for all x := (1, 22)* € Q. In Example

sin(mxy) cos(maa)

2 we take the L-shaped domain  := (-1, —1)2\ [0, 1], set again o = 1, and consider the nonlinear

viscosity given by pu(s) = 34 3(1 + s2)~1/4 ¥ 5 > 0. Then, we choose the data f and g so

(1+z1 —exp(x1))(1 — cos(z2))

that the exact solution is given by u(x) := and p(x) :=
(1 — exp(z1))(sin(z2) — z2)

(22 + 23)Y/3 — po for all x := (z1,22)* € Q, where py € R is such that [,p = 0. Note in this

example that the partial derivatives of p, and hence, in particular div o, are singular at the origin.

More precisely, because of the power 1/3, there holds o € H*/37¢(Q) and dive € H?/37¢(Q) for

each ¢ > 0.

Table 1: Example 1, history of convergence using quadrilaterals.

k] R N e(t) r(t) [ eo(d) ro(o) | eaw(o) raw(o)| e(w) r(u)| e(p) x(p) | e(o*) x(o¥)
0.0461 | 8716 | 1.18e-1 —— | 3.16e-1 —— | 3.7%+1 —— | 2.73e2 —— | 2.84e2 —— | 1.42e-0 ——
0.0359 | 14356 || 9.16e-2 1.00 | 2.46e-1  1.00 | 3.79%+1  0.00 | 2.09¢-2 1.06 | 2.16e-2 1.08 | 1.10e-0  1.00

0] 0.0183 | 54561 || 4.68¢-2 1.00 | 1.26e-1  1.00 | 3.79+1  0.00 | 1.05e-2 1.03 | 1.06e-2 1.06 | 5.64e-1  1.00
0.0135 | 101281 || 3.43¢-2 1.00 | 9.21e-2  1.00 | 3.79%+1  0.00 | 7.67e-3 1.01 | 7.80e-3 1.00 | 4.14e-1  1.00
0.0101 | 179841 | 2.58¢-2 1.00 | 6.90e-2 1.00 | 3.79e¢+1  0.00 | 5.74e-3 1.01 | 5.84e-3 1.01 | 3.10e-1 1.0
0.0461 | 28456 | 2.72e-3 —— | 7.56e-3 —— | 1.40e-0  —— | 5.8le-d —— | 1.4le-3 —— | 3.5602 ——
0.0359 | 46936 | 1.64e-3 2.02 | 4.53¢-3  2.04 | 1.09¢-0  1.00 | 3.50e-4 2.02 | 7.79¢-4 2.35 | 2.15¢-2  2.00

1]0.0183 | 178817 | 4.25e-4 2.01 | 1.16e-3  2.03 | 5.57e-1  1.00 | 9.12e-5 2.01 | 1.68e-4 2.29 | 5.64e-3 1.9
0.0135 | 332161 || 2.28¢-4 2.01 | 6.22e-4  2.02 | 4.09¢-1  1.00 | 490e-5 2.00 | 8.38e-5 2.23 | 3.04e-3  2.00
0.0101 | 590081 || 1.28¢-4 2.01 | 3.48¢-4  2.01 | 3.07e-1  1.00 | 2.75¢-5 2.00 | 4.46e-5 219 | 1.71e-3  2.00
0.0461 | 56771 | 4.28¢-5 —— | 1.39e-4 —— | 3.57e2  —— | 8.52e-6 —— | 3.33e-5 —— | 1.89%-3 ——
0.0359 | 93691 2.00e-5 3.03 | 6.46e-5  3.06 2.16e-2 2.00 4.00e-6  3.00 | 1.47e-5 3.24 | 9.09e-4  2.92

2 0.0183 | 357281 || 2.64e-6 3.02 | 8.56e-6 3.02 | 5.68¢-3  1.99 | 5.35e-7 3.00 | 1.85e-6 3.09 | 1.2de-4  2.97
0.0135 | 663841 | 1.04e-6 3.01 | 3.36e-6  3.01 | 3.06e-3  1.99 | 2.11e-7 3.00 | 7.07e-7 3.10 | 4.90e-5  3.00
0.0101 | 1179521 || 4.36e-7 3.02 | 1.41e-6  3.02 | 1.72e-3  2.00 | 8.89¢-8 3.00 | 2.92e-7 3.07 | 2.07e-5  3.00
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Table 2: Example 2, history of convergence using hexagons.

k h N e(t) r(t) | eo(o) 1ro(o) | eqiv(io) raw(o) | e(u) r(u) e(p) r(p) | eloe*) zx(o*)
0.0866 8382 2.26e-2 —— | 4.02e-2 — 1.56e-0 —— 6.62e-3 —— | 24le-2 —— | 1.18e-1 ——
0.0462 | 28668 1.20e-2  1.01 | 2.10e-2  1.03 | 1.56e-0 0.00 3.49e-3 1.02 | 1.25e-2 1.04 | 7.73e-2  0.68

0 | 0.0315 | 61050 || 8.13e-3 1.02 | 1.42e-2  1.02 | 1.56e-0 0.00 2.38¢e-3  1.00 | 8.48e-3 1.02 | 5.98¢e-2  0.67
0.0247 | 98868 || 6.38¢e-3 1.00 | 1.11e-2  1.02 | 1.56e-0 0.00 1.87¢-3  1.00 | 6.63e-3 1.02 | 5.16e-2  0.61
0.0204 | 145758 || 5.25e-3 1.01 | 9.16e-3  1.01 1.56e-0 0.00 1.54e-3  0.99 | 5.45e-3 1.01 | 4.60e-2  0.58
0.0866 | 25142 || 5.93e-4 —— | 1.50e-3 —— 1.15e-1 —— 1.86e-4 —— | 9.84e-4 —— | 4.87e-2 ——
0.0462 | 86000 1.84e-4 1.86 | 5.45e-4 1.61 | 7.66e-2 0.65 5.38e-5  1.97 | 3.65e-4 1.58 | 3.24e-2  0.65

1| 0.0315 | 183146 || 9.66e-5 1.68 | 2.96e-4  1.60 | 5.98e-2 0.65 2.52e-5 1.98 | 1.99e-4 1.59 | 2.63e-2  0.54
0.0247 | 296600 || 6.30e-5 1.77 | 2.02e-4  1.59 | 5.16e-2 0.61 1.55e-5 2.01 | 1.36e-4 1.57 | 2.26e.2  0.62
0.0204 | 437270 || 4.48e-5 1.76 | 1.49e-4  1.55 | 4.52e-2 0.68 1.06e-5 1.99 | 1.0le-4 1.53 | 2.00e-2  0.63
0.0866 | 48419 || 9.62e-5 —— | 4.32e-4 — 5.08e-2 — 4.09¢-6 —— | 2.98e-4 —— | 3.3be-2 —
0.0462 | 165627 || 3.32e-5 1.69 | 1.58e-4  1.60 | 3.41le-2 0.63 7.64e-7  2.67 | 1.09e-4 1.59 | 2.31le-2  0.59

2 | 0.0315 | 352723 || 2.0le-5 1.31 | 9.18e-5  1.42 | 2.73e-2 0.58 2.65e-7  2.77 | 6.33e-5 1.43 | 1.85e-2  0.58
0.0247 | 571227 || 1.24e-5 2.00 | 6.32e-5  1.55 | 2.36e-2 0.59 1.50e-7 2.34 | 4.38¢-5 1.53 | 1.61e-2  0.56
0.0204 | 842174 || 9.85e-6 1.19 | 4.76e-5  1.46 | 2.10e-2 0.61 8.41e-8 3.00 | 3.29e-5 1.47 | 1.44e-2  0.58

5 Conclusions

This work highlights the effectiveness of mixed virtual element methods for modeling porous

media, particularly in nonlinear settings. Their flexible structure supports adaptive strategies that
enhance both accuracy and computational efficiency by locally refining the mesh or increasing the
approximation order based on solution features, as demonstrated in [7].
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