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Resumo. Este artigo apresenta formulacbes de elementos finitos H'-conformes para resolver o
problema de Poisson em grafos em R? representados por vértices e arestas parametrizadas, com
operadores diferenciais e espagos funcionais adequados. Espagos de elementos finitos sdo construidos
localmente em cada aresta, com funcoes lineares por partes e acoplamento nodal nos vértices,
preservando a continuidade global no dominio. Experimentos numéricos mostram convergéncia
6tima, com ordem 2 na norma de L? e ordem 1 na norma de H' no grafo.
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1 Introducao

A modelagem matemaética em grafos é uma ferramenta essencial para simular sistemas comple-
x0s em ciéncia e engenharia. Grafos, compostos por vértices e arestas [6], permitem representar
redes de forma simplificada, facilitando a analise de fen6menos interconectados. Entre as aplicagoes
destacam-se a simulagao de sistemas biologicos [3, 5, 8, 9] e o estudo de fluxos em fraturas geo-
logicas [11]. Tais problemas frequentemente envolvem a solucao de equagoes diferenciais parciais
(EDPs) em grafos, exigindo adaptages de métodos numéricos tradicionais para essas estruturas.

Neste texto, focamos no desenvolvimento de uma estrutura de elementos finitos para a solugao
do problema de Poisson em grafos, uma EDP fundamental que surge em contextos fisicos varia-
dos, e a solugao dessa equagao em grafos requer adaptagao de métodos numéricos para dominios
unidimensionais, com uma complexidade a mais imposta pela estrutura de rede.

2 O Problema de Poisson em Grafos

Conforme descrito em [6], consideramos um grafo G = (V, E) composto por m vértices e n
arestas, conforme representacio geométrica espacial G C R? ilustrada na Figura 1. A cada vértice

vj se associa um ponto no espaco vj = (xj,yj), e a cada aresta e; se associa um segmento de
reta A; parametrizado por comprimento de arco. Ou seja, G = EUV = (U, Ai) U (U;n:l vj).

Adotamos também a notagao JV para os vértices externos do grafo e por Z os vértices internos.
Para estruturar o problema de Poisson, necessitamos de conceitos de calculo diferencial e integral
em grafos, extraidos das referéncias [2, 4, 6, 7, 10]. Inicialmente, seja A; = (0, L;) um dominio de
parametrizacao da aresta A;, em que L; é o comprimento de A;. A aresta é, portanto, parametrizada
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Figura 1: Tlustragao de um grafo de 8 vértices. Fonte: [4]

por um mapeamento afim Fy, : A; — A;, cuja matriz jacobiana Jg,, no caso da parametrizagao
adotada, trata-se de um vetor coluna unitario constante.

A estrutura de fungoes escalares ¢ : G — R tem duas componentes, ¢|p, = ¢; sobre as arestas
e ¢y, sobre os vértices. As componentes sobre as arestas ¢; : A; — R sdo definidas por oi(x) =
qvﬁl(FA_l(a:)), em que ¢; : A; — R. Dizemos que uma funcao ¢ : G — R & continua (¢ € C°(G))
se ¢; é continua em cada aresta A; e se, para cada vértice vj conectado a essa aresta, temos que
limg v, ¢i(x) = ¢y, (2,v;). No caso em que as fungoes &; sdo diferenciaveis, podemos definir o
gradiente Vg¢ por partes nas arestas da seguinte forma Vgo[s, = Jr,, q@é(FLl(ac))

Tomando 0 : A; — R diferenciavel, definimos, em A;, uma fungao vetorial associada através do
mapeamento de Piola 8(x) = G(Fjgl(a:))JFAi cujo divergente é dado pela seguinte relacdo:

o [OUF M(x), emA;CE
d1Vg0{ [61;, emvj€eV’ (1)

sendo [6]; o salto generalizado de 6 no vértice v; conforme definido em [4]. Por fim, o problema
de Poisson em grafos pode ser enunciado como:

Encontrar uma funcao ¢ : G — R tal que:

—divg(kVg9) = f, em G, (2a)
$=0, sobre 11 p, (2b)
kVgop-n =0y, sobre I, (2¢)

em que [Ip e I1y formam uma parti¢do disjunta do conjunto dV, onde s@o impostas as condigdes de
fronteira de Dirichlet (homogénea) e Neumann (nido homogénea, dada pela funcéo 6y). A funcao
k é limitada e estritamente positiva, e é utilizada para introduzir caracteristicas fisicas do meio.
A funcgdo f é um termo de fonte, e deve satisfazer f(v;) = 0V v; € Z para fins de conservagao.
O vetor mn, definido em cada vértice externo do grafo, corresponde & extensao do campo vetorial
tangente & aresta neste vértice, apontando para fora.
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3 Espacgos Funcionais e Problema Variacional

Para definir os espagos funcionais, seguindo as referéncias [4, 7], definimos a integral de uma
funcdo ¢; = ¢;(Fy, !(x)) definida sobre uma aresta qualquer A; da seguinte maneira:

L;
(z)de = [ ¢ A = )
/A ¢i(x) d /Af?(f) Jiy Iy, d§ /0 9(£) d§ (3)

A partir disso, podemos definir alguns espacos funcionais de Hilbert no dominio:

L2(5):{¢ tal que G — R : Z /AA¢da:<oo} (4a)

A€E
L*(G)={¢talque G — R : Z/ ¢dw+z¢(vj)<oo (4b)
Aeg /N %
H' (&) = {¢ € L*(€) tal que Vg¢ € [L*(&)]*} (4c)
HY(G) = H'(£)nC%(G) (4d)

Esperando encontrar uma solugao do problema de Poisson (2) no espago
H&,HD(Q) = {w € H'(G) tal que P, = 0} ,

multiplicamos ambos os lados da equagao (2a) por fungdes testes arbitrarias ¢ € H&,Hp (G) e
integramos por partes, obtendo o problema variacional associado:
Encontrar ¢ € U = Hj 7, (G) tal que

A(b,9) = L) Vb € U (5)
em que
A6, ) = Z/ Vb - Vouda, e L(6) = Z/ St 3 On(v) (v
Aeg v N Aeg i vi€lln

4 Elementos Finitos em Grafos

A construcao de espacos de elementos finitos H'-conformes em grafos G segue a abordagem
proposta em [1, 7], estruturada em trés etapas fundamentais. Sobre cada aresta A;, definimos uma
particdo 7; mapeada a partir de uma parti¢io uniforme 7; = {K } do intervalo de parametrizagao.
Desta forma, definem-se os espacos de elementos finitos

Z/[L[\i:{é¢€H1(/v\¢) : (i)i|K€P1(K),VK€7V;}, (6)
Subsequentemente, transportamos estes espacos para as arestas A; do grafo:
Unia, = {0i(@) = Gi(Fy (@)« di €Uy 5.} (7)

O parametro h representa o didmetro méximo dos elementos das malhas 7;. O espago de elementos
finitos em todo o grafo G surge do acoplamento consistente dos espacos locais:

Unig={v € Hypn,(G) : ¥la, €Uni, VA €G}. (8)

Uma base global By 1,6 = {¥;} para o espaco Uy 1,g é construida através do acoplamento de
bases locais em cada aresta, gerando fungoes do tipo “chapéu”, como ilustrado na Figura 2.

Sendo assim, utilizando a representagéo da solugdo aproximada nesta base uy () = Zsz’l ¢;¥;(x)
e utilizando fungoes testes ¢ = ¥; obtemos o sistema linear Age = Lg através do processo padrao
de montagem em elementos finitos.
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Figura 2: Bases locais do espago Uy ;¢ em um grafo simples de trés arestas. Fonte: [4]

5 Experimentos Numéricos
Utilizando os espagos de aproximagao da secao anterior, simulamos dois testes numéricos.

Teste 1: Historico de convergéncia do método. Para o grafo em formato de “Y” da Figura 2,
com quatro vértices V = {vy = (0,0),ve = (1,0),v3 = (1 + %, %),m =(1+ %, —?)} e trés
arestas £ = {A1, Aa, A3}, tomamos o problema de Poisson conforme descrito anteriormente, com

k =1 e uma solucao analitica

sin (g§>oFA_1(az), se xeA=A,

o) = sin(g(5+1))0F[1(w)7 se @€A=As Ay

(9)

O termo de fonte do problema é f(x) = —divg(kVg¢(x)), a condi¢do de contorno de Dirichlet
homogénea é imposta em IIp = v; e a condicao de Neumann nao homogénea correspondente a
Vg¢ ¢ imposta em Iy = {v3,v4}. Em cada teste realizado, alteramos o ntimero N = 2° (i =
3,4,5,6,7) de elementos por aresta. Os erros obtidos nas normas de L?(€) e de H'(G), assim
como a ordem de convergéncia numeérica verificada, se encontram na Tabela 1. Vemos que ha uma
convergéncia linear na norma do espagco H!'(G), e quadratica na norma do espaco L?(£). Essa
ordem de convergéncia é analoga & ordem obtida em resultados de elementos finitos para dominios
tradicionais.

Tabela 1: Teste 1 - Histérico de convergéncia da solugao aproximada.

N ||¢ = oullr2y Ordem || — énllgrgy Ordem

8 2.4865x1073 — 3.1556x 1072 —
16 6.2201x1074 2.00 1.5749x 1072 1.00
32 1.5553x107% 2.00 7.8709x1073 1.00
64  3.8884x1075 2.00 3.9350x10~3 1.00
128  9.7210x1076 2.00 1.9674x1073 1.00

Teste 2: Experimento qualitativo de conservagao de fluxo. Utilizamos um grafo mais complexo
com 16 vértices, representado na Figura 3. Nele, impomos uma condi¢ao de Neumann nao homoge-
nea no vértice vi = (—0.5,0.5) correspondente a uma entrada de fluxo 0 = —Vg¢ = 1. Nos demais
vértices de V), impoe-se condigdo de contorno de Dirichlet homogénea. Ademais, mantemos k = 1
e impomos f = 0. O objetivo desse experimento é verificar o comportamento de uma solugao ao
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Figura 3: Teste 2 - Representacao geométrica do grafo utilizado. Fonte: [4].

impor entrada de massa através de um fluxo unitario. O objetivo é observar se o somatorio dos
fluxos de saida é o mesmo que o fluxo de entrada, indicando uma nog¢ao de conservagao no método.

A solucao aproximada obtida esta representada graficamente na Figura 4. Foi utilizado, para
este experimento, uma particdo do dominio de 2 elementos por aresta. E possivel observar que a
solugao tem uma natureza linear por aresta. Desta forma, o fluxo serd constante por arestas, e foi
representada na Tabela 2. Podemos observar claramente, a partir dos resultados, que a nogao de
conservagao é verificada no método, mesmo para uma rede mais complexa com varias ramificagoes.

Figura 4: Teste 2 - Solugdo encontrada pelo método. Fonte: [4]
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Tabela 2: Teste 2 - Fluxos numéricos o, em cada aresta A; do grafo G, bem como somatoério do
fluxo de saida total oyy;.

Ao M Ao A3 Ay As A A7 Ag
on, 1.0000 0.4434 0.2821 0.1209 0.0403 0.0403 0.0403 0.1612
Ai AQ AlO All A12 A13 A14 A15 Oout
on  0.2745 0.1689 0.1056 0.0633 0.0422 0.0211 0.0211 1.0000

6 Consideracgoes Finais

Este trabalho apresentou uma formulacdo de elementos finitos H'-conformes para a resolu-
¢ao do problema de Poisson em grafos geométricos, demonstrando a eficicia do método através
de experimentos numéricos que confirmaram a convergéncia 6tima nas normas L?(£) e H(G).
A construcao dos espagos de elementos finitos, baseada em fungoes lineares por partes e acopla-
mento nodal, mostrou-se robusta e adequada para a preservagao da continuidade global no grafo.
Além disso, a estratégia de acoplamento entre o grafo e um dominio bidimensional evidenciou a
versatilidade da abordagem, permitindo a integracao de problemas em geometrias complexas e
multidimensionais. Os resultados obtidos abrem caminho para aplica¢ées em areas como fluxo
em redes e interagdo entre estruturas discretas e continuas, refor¢ando a relevincia do método
proposto.
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