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Resumo. Este artigo apresenta formulações de elementos finitos H1-conformes para resolver o
problema de Poisson em grafos em R2 representados por vértices e arestas parametrizadas, com
operadores diferenciais e espaços funcionais adequados. Espaços de elementos finitos são construídos
localmente em cada aresta, com funções lineares por partes e acoplamento nodal nos vértices,
preservando a continuidade global no domínio. Experimentos numéricos mostram convergência
ótima, com ordem 2 na norma de L2 e ordem 1 na norma de H1 no grafo.
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1 Introdução
A modelagem matemática em grafos é uma ferramenta essencial para simular sistemas comple-

xos em ciência e engenharia. Grafos, compostos por vértices e arestas [6], permitem representar
redes de forma simplificada, facilitando a análise de fenômenos interconectados. Entre as aplicações
destacam-se a simulação de sistemas biológicos [3, 5, 8, 9] e o estudo de fluxos em fraturas geo-
lógicas [11]. Tais problemas frequentemente envolvem a solução de equações diferenciais parciais
(EDPs) em grafos, exigindo adaptações de métodos numéricos tradicionais para essas estruturas.

Neste texto, focamos no desenvolvimento de uma estrutura de elementos finitos para a solução
do problema de Poisson em grafos, uma EDP fundamental que surge em contextos físicos varia-
dos, e a solução dessa equação em grafos requer adaptação de métodos numéricos para domínios
unidimensionais, com uma complexidade a mais imposta pela estrutura de rede.

2 O Problema de Poisson em Grafos
Conforme descrito em [6], consideramos um grafo G = (V,E) composto por m vértices e n

arestas, conforme representação geométrica espacial G ⊂ R2 ilustrada na Figura 1. A cada vértice
vj se associa um ponto no espaço vj = (xj, yj), e a cada aresta ei se associa um segmento de
reta Λi parametrizado por comprimento de arco. Ou seja, G = E ∪ V = (

⋃n
i=1 Λi) ∪

(⋃m
j=1 vj

)
.

Adotamos também a notação ∂V para os vértices externos do grafo e por I os vértices internos.
Para estruturar o problema de Poisson, necessitamos de conceitos de cálculo diferencial e integral
em grafos, extraídos das referências [2, 4, 6, 7, 10]. Inicialmente, seja Λ̌i = (0, Li) um domínio de
parametrização da aresta Λi, em que Li é o comprimento de Λi. A aresta é, portanto, parametrizada
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Figura 1: Ilustração de um grafo de 8 vértices. Fonte: [4]

por um mapeamento afim FΛi : Λ̌i → Λi, cuja matriz jacobiana JFi , no caso da parametrização
adotada, trata-se de um vetor coluna unitário constante.

A estrutura de funções escalares ϕ : G → R tem duas componentes, ϕ|Λi
= ϕi sobre as arestas

e ϕvj
sobre os vértices. As componentes sobre as arestas ϕi : Λi → R são definidas por ϕi(x) =

ϕ̌i(F
−1
Λi

(x)), em que ϕ̌i : Λ̌i → R. Dizemos que uma função ϕ : G → R é contínua (ϕ ∈ C0(G))
se ϕi é contínua em cada aresta Λi e se, para cada vértice vj conectado a essa aresta, temos que
limx→vj

ϕi(x) = ϕvj
(xj , vj). No caso em que as funções ϕ̌i são diferenciáveis, podemos definir o

gradiente ∇Gϕ por partes nas arestas da seguinte forma ∇Gϕ|Λi
= JFΛi

ϕ̌′i(F
−1
Λi

(x)).

Tomando θ̌ : Λ̌i → R diferenciável, definimos, em Λi, uma função vetorial associada através do
mapeamento de Piola θ(x) = θ̌(F−1

Λi
(x))JFΛi

cujo divergente é dado pela seguinte relação:

divG θ =

{
θ̌′i(F

−1
Λi

(x)), em Λi ⊂ E
[[θ]]j , em vj ∈ V , (1)

sendo [[θ]]j o salto generalizado de θ no vértice vj conforme definido em [4]. Por fim, o problema
de Poisson em grafos pode ser enunciado como:

Encontrar uma função ϕ : G → R tal que:

−divG(κ∇Gϕ) = f, em G, (2a)
ϕ = 0, sobre ΠD, (2b)

κ∇Gϕ · n = θN , sobre ΠN , (2c)

em que ΠD e ΠN formam uma partição disjunta do conjunto ∂V, onde são impostas as condições de
fronteira de Dirichlet (homogênea) e Neumann (não homogênea, dada pela função θN ). A função
κ é limitada e estritamente positiva, e é utilizada para introduzir características físicas do meio.
A função f é um termo de fonte, e deve satisfazer f(vj) = 0 ∀ vj ∈ I para fins de conservação.
O vetor n, definido em cada vértice externo do grafo, corresponde à extensão do campo vetorial
tangente à aresta neste vértice, apontando para fora.
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3 Espaços Funcionais e Problema Variacional
Para definir os espaços funcionais, seguindo as referências [4, 7], definimos a integral de uma

função ϕi = ϕ̌i(F
−1
Λi

(x)) definida sobre uma aresta qualquer Λi da seguinte maneira:∫
Λi

ϕi(x) dx =

∫
Λ̌

ϕ̌(ξ)JT
FΛi

JFΛi
dξ =

∫ Li

0

ϕ̌(ξ) dξ (3)

A partir disso, podemos definir alguns espaços funcionais de Hilbert no domínio:

L2(E) =

{
ϕ tal que G → R :

∑
Λi∈E

∫
Λi

ϕ dx <∞

}
(4a)

L2(G) =

ϕ tal que G → R :
∑
Λi∈E

∫
Λi

ϕdx+
∑
vj∈V

ϕ(vj) <∞

 (4b)

H1(E) =
{
ϕ ∈ L2(E) tal que ∇Gϕ ∈ [L2(E)]2

}
(4c)

H1(G) = H1(E) ∩ C0(G) (4d)

Esperando encontrar uma solução do problema de Poisson (2) no espaço

H1
0,ΠD

(G) =
{
ψ ∈ H1(G) tal que ψ|ΠD

= 0
}
,

multiplicamos ambos os lados da equação (2a) por funções testes arbitrárias ψ ∈ H1
0,ΠD

(G) e
integramos por partes, obtendo o problema variacional associado:

Encontrar ϕ ∈ U = H1
0,ΠD

(G) tal que

A(ϕ, ψ) = L(ψ) ∀ ψ ∈ U (5)

em que

A(ϕ, ψ) =
∑
Λi∈E

∫
Λi

κ∇Gϕ · ∇Gψ dx, e L(ψ) =
∑
Λi∈E

∫
Λi

ψf dx+
∑

vj∈ΠN

θN (vj)ψ(vj).

4 Elementos Finitos em Grafos
A construção de espaços de elementos finitos H1-conformes em grafos G segue a abordagem

proposta em [1, 7], estruturada em três etapas fundamentais. Sobre cada aresta Λi, definimos uma
partição Ti mapeada a partir de uma partição uniforme Ťi = {Ǩ} do intervalo de parametrização.
Desta forma, definem-se os espaços de elementos finitos

U1,Λ̌i
=

{
ϕ̌i ∈ H1(Λ̌i) : ϕ̌i|K ∈ P1(K), ∀ K ∈ Ťi

}
. (6)

Subsequentemente, transportamos estes espaços para as arestas Λi do grafo:

Uh,1,Λi =
{
ϕi(x) = ϕ̌i(F

−1
Λi

(x)) : ϕ̌i ∈ U1,Λ̌i

}
. (7)

O parâmetro h representa o diâmetro máximo dos elementos das malhas Ti. O espaço de elementos
finitos em todo o grafo G surge do acoplamento consistente dos espaços locais:

Uh,1,G =
{
ψ ∈ H1

0,ΠD
(G) : ψ|Λi ∈ Uh,1,Λi , ∀ Λi ∈ G

}
. (8)

Uma base global Bh,1,G = {Ψj} para o espaço Uh,1,G é construída através do acoplamento de
bases locais em cada aresta, gerando funções do tipo “chapéu”, como ilustrado na Figura 2.

Sendo assim, utilizando a representação da solução aproximada nesta base uh(x) =
∑Nh

j=1 cjΨj(x)
e utilizando funções testes ψ = Ψi obtemos o sistema linear AGc = LG através do processo padrão
de montagem em elementos finitos.
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Figura 2: Bases locais do espaço Uh,k,G em um grafo simples de três arestas. Fonte: [4]

5 Experimentos Numéricos

Utilizando os espaços de aproximação da seção anterior, simulamos dois testes numéricos.

Teste 1: Histórico de convergência do método. Para o grafo em formato de “Y” da Figura 2,
com quatro vértices V = {v1 = (0, 0), v2 = (1, 0), v3 = (1 +

√
2
2 ,

√
2
2 ), v4 = (1 +

√
2
2 ,−

√
2
2 )} e três

arestas E = {Λ1,Λ2,Λ3}, tomamos o problema de Poisson conforme descrito anteriormente, com
κ ≡ 1 e uma solução analítica

ϕ(x) =

sin
(π
2
ξ
)
◦ F−1

Λ (x), se x ∈ Λ = Λ1,

sin
(π
2
(ξ + 1)

)
◦ F−1

Λ (x), se x ∈ Λ = Λ2,Λ3

. (9)

O termo de fonte do problema é f(x) = −divG(κ∇Gϕ(x)), a condição de contorno de Dirichlet
homogênea é imposta em ΠD = v1 e a condição de Neumann não homogênea correspondente a
∇Gϕ é imposta em ΠN = {v3, v4}. Em cada teste realizado, alteramos o número N = 2i (i =
3, 4, 5, 6, 7) de elementos por aresta. Os erros obtidos nas normas de L2(E) e de H1(G), assim
como a ordem de convergência numérica verificada, se encontram na Tabela 1. Vemos que há uma
convergência linear na norma do espaço H1(G), e quadrática na norma do espaço L2(E). Essa
ordem de convergência é análoga à ordem obtida em resultados de elementos finitos para domínios
tradicionais.

Tabela 1: Teste 1 - Histórico de convergência da solução aproximada.
N ∥ϕ− ϕh∥L2(E) Ordem ∥ϕ− ϕh∥H1(G) Ordem

8 2.4865×10−3 — 3.1556×10−2 —
16 6.2201×10−4 2.00 1.5749×10−2 1.00
32 1.5553×10−4 2.00 7.8709×10−3 1.00
64 3.8884×10−5 2.00 3.9350×10−3 1.00
128 9.7210×10−6 2.00 1.9674×10−3 1.00

Teste 2: Experimento qualitativo de conservação de fluxo. Utilizamos um grafo mais complexo
com 16 vértices, representado na Figura 3. Nele, impomos uma condição de Neumann não homogê-
nea no vértice v1 = (−0.5, 0.5) correspondente a uma entrada de fluxo σ = −∇Gϕ = 1. Nos demais
vértices de ∂V, impõe-se condição de contorno de Dirichlet homogênea. Ademais, mantemos κ ≡ 1
e impomos f = 0. O objetivo desse experimento é verificar o comportamento de uma solução ao
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Figura 3: Teste 2 - Representação geométrica do grafo utilizado. Fonte: [4].

impor entrada de massa através de um fluxo unitário. O objetivo é observar se o somatório dos
fluxos de saída é o mesmo que o fluxo de entrada, indicando uma noção de conservação no método.

A solução aproximada obtida está representada graficamente na Figura 4. Foi utilizado, para
este experimento, uma partição do domínio de 2 elementos por aresta. É possível observar que a
solução tem uma natureza linear por aresta. Desta forma, o fluxo será constante por arestas, e foi
representada na Tabela 2. Podemos observar claramente, a partir dos resultados, que a noção de
conservação é verificada no método, mesmo para uma rede mais complexa com várias ramificações.

Figura 4: Teste 2 - Solução encontrada pelo método. Fonte: [4]
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Tabela 2: Teste 2 - Fluxos numéricos σh em cada aresta Λi do grafo G, bem como somatório do
fluxo de saída total σout.

Λi Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8

σh 1.0000 0.4434 0.2821 0.1209 0.0403 0.0403 0.0403 0.1612

Λi Λ9 Λ10 Λ11 Λ12 Λ13 Λ14 Λ15 σout

σh 0.2745 0.1689 0.1056 0.0633 0.0422 0.0211 0.0211 1.0000

6 Considerações Finais
Este trabalho apresentou uma formulação de elementos finitos H1-conformes para a resolu-

ção do problema de Poisson em grafos geométricos, demonstrando a eficácia do método através
de experimentos numéricos que confirmaram a convergência ótima nas normas L2(E) e H1(G).
A construção dos espaços de elementos finitos, baseada em funções lineares por partes e acopla-
mento nodal, mostrou-se robusta e adequada para a preservação da continuidade global no grafo.
Além disso, a estratégia de acoplamento entre o grafo e um domínio bidimensional evidenciou a
versatilidade da abordagem, permitindo a integração de problemas em geometrias complexas e
multidimensionais. Os resultados obtidos abrem caminho para aplicações em áreas como fluxo
em redes e interação entre estruturas discretas e contínuas, reforçando a relevância do método
proposto.
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