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Abstract. We focus our attention in the development of a virtual element method for the ap-
proximation of the vibration problem of a thin plate modeled by Kirchhoff-Love equations. We
introduce a weak variational formulation based on the Sobolev space H2 . In addition, we propose
a discretization by means of the lowest-order non conforming elements. We show that the resulting
scheme provides a correct approximation of the spectrum and prove optimal-order error estimates.
Finally, we report some numerical tests supporting our theoretical results.
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1 Introduction
In this work we study the analysis of a virtual element method (VEM) [3] to compute the vi-

bration modes of an elastic plate. This problem has attracted much interest since it is frequently
encountered in engineering applications such as bridge, ship, and aircraft design. It can be formu-
lated as a spectral problem whose solution is related with the vibration frequencies and modes of
the plate (i.e., eigenvalues-vibration frequencies and eigenfunctions-vibration modes).

In this work we propose and analyze a virtual element method for the vibration problem of
a plate modeled with the Kirchhoff-Love equations [4]. From the associated source problem, a
solution operator is defined, which allows to characterize the spectrum of the vibration plate with
its spectrum. In order to approximate the eigenvalues and eigenfunctions associated with the
vibration problem, a discrete version of the solution operator is defined. Estimates of the error and
order of convergence are obtained for the eigenfunctions and a double order for the eigenvalues.

The outline of this work is as follows. In Section 2 we present the equations that describe
the vibration problem of a thin plate. We propose a weak variational formulation associated to
the model problem. Using the Lax-Milgram theory for the associated source problem of said
formulation, a solution operator is defined that characterizes the continuous spectrum with its
spectrum. In order of convergence is obtained for the eigenfunctions and double order for the
eigenvalues independent on the parameter h of the discretization. We present some numerical tests
in Section 4 with configuration domains for the plate in L-shaped and square-shaped domains.
We illustrate through graphs and tables these numerical results where the double order for the
eigenvalues predicted in the theoretical analysis can be verified.

Throughout the document we will use standard notations for Sobolev spaces, norms and semi-
norms. Moreover, we will denote with c and C, with or without subscripts, tildes, or hats a generic
constant independent of the mesh size h, which may take different values in different occurrences.
Let O ⊂ Ω an open set, and s ∈ [0,∞). We will indicate the standard Sobolev seminorms (also for
the norms) with the following shorter symbols |v|s = |v|Hs(O), |v|s = |v|Hs(O) for all v ∈ Hs(O) .
Moreover, we denote by Pk(O) the set of polynomial of degree up to k defined on O.
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2 The Model Problem
The vibration eigenvalue problem of a simply supported plate (VEP-SSP) and The vibration

eigenvalue problem of a clamped plate (VEP-CP) modeled by the Kirchhoff-Love equations, are
formulated as follows (see for instance, [4, 8]): Find (λ, u), with u ̸= 0, such that VEP-SSP

∆2u = λu in Ω,
u = ∆u = 0 on Γ,

and

 VEP-CP
∆2u = λu in Ω,
u = ∂nu = 0 on Γ,

(1)

where Γ := ∂Ω. In both systems of equations, the parameter λ = ω2, with ω > 0 representing the
vibrational frequency.

2.1 The Continuous Variational Formulation
We have that the weak formulations of the spectral problems (1) are given by. Find (λ, u) ∈

R×H†, with u ̸= 0, such that

a(u, v) :=

∫
Ω

∇2u : ∇2v = λ

∫
Ω

u v =: λb(u, v) ∀v ∈ H†, (2)

where, ∇2u denotes the Hessian matrix of u, and we have employed the superscript † ∈ {SSP,CP}
to refer us to the following Sobolev spaces:

HSSP :=
{
v ∈ H2(Ω) : v = 0 on Γ

}
and HCP :=

{
v ∈ H2(Ω) : v = ∂nv = 0 on Γ

}
.

Now, in order to characterize the spectrum of the continuous spectral problem (2) we introduce the
following solution operator. Given any f belonging to L2(Ω) define the operator T : L2(Ω) → H† ⊂
L2(Ω) by Tf =: ũ where ũ is the unique solution of the source problem a(ũ, v) = b(f, v) ∀v ∈
H†. It is easy to check that Lax-Milgram Theorem guarantees the well definition and boundedness
of the operator T . Moreover, (λ, u) solves the spectral problem (2) if and only if Tu = µu, where
µ := 1

λ ̸= 0 and u ̸= 0. In addition, we have that T is a compact and self-adjoint operator.
Therefore, the spectrum of operator T is a sequence of real positive eigenvalues that converges to
0. Moreover, the multiplicity of each eigenvalue is finite (see [4]).

3 The Discrete Variational Formulation
Let Ωh be a discretization of Ω composed of generic polyhedrons K. For all K ∈ Ωh, we denote

by e a general edge in ∂K. In addition, we denote by Eh and v the set of all edges in Ωh and a
generic vertice on Eh, respectively.

The non-conforming VEM scheme of the eigenvalue problem (2), read as: seek non-zero
(uh, λh) ∈ Vh × R, such that

ah(uh, vh) = λhbh(uh, vh) ∀vh ∈ Vh, (4)

where space Vh is established in [2, 9] and defined as follows:

Vh :=
{
vh ∈ H2,NC(Ωh) : vh|K ∈ Vh(K) ∀K ∈ Ωh

}
, (5)

H2,NC(Ωh) :=
{
vh ∈ L2(Ω) : vh|K ∈ H2(K) ∀K ∈ Ωh; vh(v) = 0 ∀v ∈ ∂Ω;

([[∂nevh]], q)0,e = 0 ∀q ∈ P0(e) ∀e ∈ Eh
}
, (6)
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Vh(K) :=
{
vh ∈ H2(K) : ∆2vh ∈ P2(K), vh|e ∈ P2(e), ∆vh|e ∈ P0(e) ∀e ∈ ∂K

(q, vh −Π∆
Kvh)0,K = 0 ∀q ∈ P2(K), (q, vh −Π∆

Kvh)0,e = 0 ∀e ⊂ ∂K
}
.

(7)

In addition, H2,NC(Ωh) is endowed with the broken seminorm (which is a norm on Vh) by:

|vh|2,h :=
( ∑

K∈Ωh

|vh|22,K
)1/2

.

Now, in order to introduce the discrete solution operator we first establish the following result,
whose proof can be obtained by following the same arguments as for [5, Lemma 4.1]

Lemma 3.1. There exist positive constants CΩ and CP such that

|ah(uh, vh)| ≤ Ca||uh||2,h||vh||2,h ∀uh, vh ∈ Vh

|bh(uh, vh)| ≤ Cb||uh||0,Ω||vh||0,Ω ∀uh, vh ∈ Vh,

ah(vh, vh) ≥ CP ||vh||22,Ω ∀v ∈ Vh.

Given any fh belonging to Vh define the operator Th : Vh → Vh ⊂ L2(Ω) by Thfh =: ũh

where ũh is the unique solution of the source problem ah(ũh, vh) = bh(fh, vh) ∀vh ∈ Vh.
It is easy to check that Lax-Milgram and Lemma 3.1 guarantee the well definition and bounded-

ness of the operator Th. Moreover, resorting to the standard spectral theory for compact operators
(see for instance [4]) we obtain the following results, which establishes the convergence of the
discrete spectrum to the continuous one.

Theorem 3.1. There exist s > 1/2 and C > 0 independent of h such that

∥(T − Th)v∥0,Ω ≤ Ch2s||v||0,Ω,
|λ− λh| ≤ Ch2, (8a)

for all eigenfunction v ∈ H2+s(Ω) with s ≥ 1/2.

The proof of the Teorem 3.1 can be obtained with the same arguments as those applied in [1,
Theorem 5.2].

Remark 3.1. The constant s in the lemma above represents the Sobolev regularity associated with
the biharmonic equation under homogeneous Dirichlet boundary conditions. This constant depends
solely on the geometry of the domain Ω. If Ω is convex, then s = 1. Otherwise, the Lemma holds
for all s < s0, where s0 ∈

(
1
2 , 1

)
is determined by the largest reentrant angle of Ω (see [6] for the

exact expression defining s0).

4 Numerical Results
In this section we employ a Matlab code to approximate the lowest eigenvalues of the vibration

problem of a thin plate through the discrete scheme analyzed in this work. We have computed
the eigenvalues considering as parameter h = 1√

NP
for NP = 322, 642, 1282, where NP denotes the

number of polygons inside the mesh Ωh. In addition, we have calculated the rate of convergence
for the first four lowest eigenvalues with a least-squares fit of the form

λ(h) ≈ λE
ih + hαi
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where αi is the rate of convergence approximated of each extrapolated eigenvalue λE
ih , with i ∈ N

(see for instance [7]). We consider the following configurations for the domain Ω.
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Figure 1: Meshes (from left to right): Ωt
L,Ωv

L, Ωs
S,Ωv

S,Ωt
C, Ωv

C. Source: Figure created by the author

4.1 Test: Non-Convex Domain

In this test, we consider the following domain ΩL := (0, 1)2 − {[1/2, 1] × [1/2, 1]} to compute
the the first four lowest eigenvalues associated to VEP-CP and we report them in Table 1. In this
case, the method converges with an order close to 1.44 for the first eigenvalue, which is as expected
due to the singularity of the solution (cf. Remark 3.1). However, for the second, third, and fourth
eigenvalues, the method achieves higher convergence orders. In addition Figure 2 illustrates the
four eigenfunctions u1h, u2h, u3h, u4h of a L-shaped plate for VEP-CP.

Figure 2: Eigenfunctions u1h, u2h, u3h, u4h. Source: Figure created by the author

Table 1: Lowest eigenvalues of a L-shaped plate for VEP-CP.
Ωt

L λ1h λ2h λ3h λ4h

NP = 3072 6.4753e+03 1.0810e+00 1.4547e+00 2.5414e+00
NP = 12288 6.6159e+03 1.0990e+00 1.4813e+00 2.5961e+00
NP = 49152 6.6676e+03 1.1038e+00 1.4882e+00 2.6104e+00
rate of conv. 1.4400e+00 1.9100e+00 1.9500e+00 1.9300e+00

λE
ih 6.6978e+03 1.1055e+00 1.4906e+00 2.6155e+00

Ωv
L λ1h λ2h λ3h λ4h

NP = 640 6.3858e+03 1.0684e+04 1.4422e+04 2.5179e+04
NP = 2560 6.5861e+03 1.0956e+04 1.4782e+04 2.5901e+04
NP = 10240 6.6276e+03 1.1038e+00 1.4882e+00 2.6204e+00
rate of conv. 1.4400e+00 1.9100e+00 1.9500e+00 1.9300e+00

λE
ih 6.6970e+03 1.1057e+04 1.4905e+04 2.6153e+04

4.2 Test: Square-Shaped Domain

In this case, we consider ΩS := (0, 1)× (0, 1) to compute the first four lowest eigenvalues asso-
ciated with VEP-SSP and VEP-CP. These values are reported in Tables 2 and 3, respectively.
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In both cases, the order of convergence for the eigenvalues is expected to be equal to 2 (cf. The-
orem 3.1). In addition, Figure 3 illustrates the four eigenfunctions associated with the first four
lowest vibration eigenvalues of a square-shaped simply supported plate.

Table 2: Lowest eigenvalues of a square-shaped plate for VEP-SSP B.C.
Ωs

S λ1h λ2h λ3h λ4h

NP = 1024 3.8860e+02 2.4192e+03 2.4192e+03 6.1690e+03
NP = 4096 3.8938e+02 2.4312e+03 2.4312e+03 6.2176e+03
NP = 16384 3.8957e+02 2.4342e+03 2.4342e+03 6.2300e+03
rate of conv. 1.9900e+00 1.9800e+00 1.9800e+00 1.9700e+00
exact value 4π4 25π4 25π4 64π4

Ωv
S λ1h λ2h λ3h λ4h

NP = 1024 3.8868e+02 2.4196e+03 2.4207e+03 6.1724e+03
NP = 4096 3.8939e+02 2.4314e+03 2.4315e+03 6.2188e+03
NP = 16384 3.8958e+02 2.4343e+03 2.4343e+03 6.2303e+03
rate of conv. 1.9700e+00 2.0300e+00 1.9200e+00 2.0100e+00
exact value 4π4 25π4 25π4 64π4

Table 3: Lowest eigenvalues of a square-shaped plate for VEP-CP.
Ωs

S λ1h λ2h λ3h λ4h

NP = 1024 1.2817e+03 5.2928e+03 5.2928e+03 1.1427e+00
NP = 4096 1.2916e+03 5.3627e+03 5.3627e+03 1.1638e+00
NP = 16384 1.2941e+03 5.3806e+03 5.3806e+03 1.1692e+00
rate of conv. 1.9800e+00 1.9600e+00 1.9600e+00 1.9400e+00

λE
ih 1.2949e+03 5.3869e+03 5.3869e+03 1.1712e+00
Ωv

S λ1h λ2h λ3h λ4h

NP = 1024 1.2830e+03 5.2963e+03 5.3044e+03 1.1442e+04
NP = 4096 1.2918e+03 5.3638e+03 5.3646e+03 1.1642e+04
NP = 16384 1.2942e+03 5.3811e+03 5.3811e+03 1.1694e+04
rate of conv. 1.9200e+00 1.9700e+00 1.8600e+00 1.9600e+00

λE
ih 1.2950e+03 5.3870e+03 5.3875e+03 1.1712e+04

Figure 3: Eigenfunctions u1h, u2h, u3h, u4h. Source: Figure created by the author

4.3 Test Circle-Shaped Domain
This test reports the approximation of the first four lowest eigenvalues associated with VEP-

CP and VEP-SSP for a circle-shaped plate defined by and ΩC := {(x, y) ∈ R2 : x2 + y2 ≤ 1/4}.
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Tables 4 and 5 illustrate the double order of convergence of the method proposed in this work.
In addition, Figure 4 shows the eigenfunctions u1h, u2h, u3h, u4h of a circle-shaped domain for
VEP-CP.

Table 4: Lowest eigenvalues of a circle-shaped plate for VEP-CP.
Ωv

C λ1h λ2h λ3h λ4h

NP = 1024 1.6595e+03 7.1424e+03 7.1480e+03 1.9098e+00
NP = 4096 1.6673e+03 7.2098e+03 7.2104e+03 1.9370e+00
NP = 16384 1.6692e+03 7.2266e+03 7.2266e+03 1.9439e+00
rate of conv. 2.0300e+00 2.0100e+00 1.9400e+00 1.9700e+00

λE
ih 1.6698e+03 7.2321e+03 7.2323e+03 1.9463e+00

Ωt
C λ1h λ2h λ3h λ4h

NP = 184 1.6319e+03 6.8691e+03 6.8875e+03 1.7970e+00
NP = 712 1.6597e+03 7.1368e+03 7.1418e+03 1.9052e+00
NP = 2826 1.6673e+03 7.2084e+03 7.2088e+03 1.9359e+00

rate of conv. 1.8800e+00 1.9000e+00 1.9200e+00 1.8100e+00
λE
ih 1.6701e+03 7.2347e+03 7.2330e+03 1.9483e+00

Table 5: Lowest eigenvalues of a circle-shaped plate for VEP-SSP.
Ωt

C λ1h λ2h λ3h λ4h

NP = 184 3.1409e+02 2.8547e+03 2.8582e+03 9.8049e+03
NP = 712 3.1546e+02 2.9007e+03 2.9012e+03 1.0090e+00
NP = 2826 3.1581e+02 2.9126e+03 2.9127e+03 1.0170e+00

rate of conv. 1.9500e+00 1.9500e+00 1.9000e+00 1.8200e+00
λE
ih 3.1594e+02 2.9168e+03 2.9169e+03 1.0202e+00

Figure 4: Eigenfunctions u1h, u2h, u3h, u4h. Source: Figure created by the author

5 Conclusion
We have considered a virtual element method for solving the vibration problem of a thin elastic

plate modeled by the Kirchhoff-Love equations. We derived a weak variational formulation within
the Sobolev space H2 and proposed a discretization scheme using lowest-order non-conforming
elements. Our theoretical analysis provides optimal-order error estimates, confirming that the
method offers an accurate approximation of both the eigenvalues and the eigenfunctions of the
vibration problem. The numerical tests conducted demonstrate the effectiveness of the proposed
method, successfully verifying the predicted optimal order of convergence for the eigenvalues. These
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results highlight the potential of the virtual element method as a robust tool for solving vibration
problems in thin plates, offering a promising approach for engineering applications where such
problems arise.
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