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Resumo. Neste trabalho, realiza-se uma análise comparativa entre as formulações da equação es-
tacionária de difusão-advecção-reação fracionária, com derivadas de Riemann-Liouville e de Caputo
aplicadas ao termo difusivo. Desenvolve-se a formulação variacional do problema, cuja abordagem
fracionária é implementada por meio do método de Galerkin, com o objetivo de comparar os es-
quemas correspondentes às diferentes definições de derivadas fracionárias. A solução numérica é
obtida com base nesse método, e testes computacionais são realizados para ambos os operadores,
especificamente para o caso em que suas formulações coincidem. São considerados diferentes valores
para a ordem fracionária e, por fim, é conduzido um teste de refinamento da malha.
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1 Introdução
A equação de difusão-advecção-reação constitui uma ferramenta fundamental na modelagem

de fenômenos físicos, químicos e biológicos, nos quais o transporte de substâncias é influenciado
simultaneamente por processos de difusão, escoamento (advecção) e reações locais. Pode-se citar
como exemplo de aplicação os estudos de [1] e [2] que utilizaram esta equação para análise do
processo de dispersão de poluição em meio aquático.

Este estudo, de caráter exploratório, tem como objetivo complementar a investigação apre-
sentada no III Simpósio Brasileiro de Cálculo Fracionário, na qual foi abordada a equação de
difusão-advecção-reação com a derivada de Caputo aplicada ao termo difusivo. Na ocasião, foram
analisados diferentes cenários por meio da variação da ordem da derivada de Caputo, realizados
testes de refinamento da malha e foi investigada a influência do número de Péclet sobre a solução.

A comparação entre as formulações da equação estacionária de difusão-advecção-reação fraci-
onária, utilizando o método de Galerkin, constitui uma etapa relevante para o aprofundamento
da análise numérica com derivadas fracionárias. São considerados os casos em que a derivada
de Caputo é aplicada ao termo difusivo e comparados aos resultados obtidos com a derivada
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de Riemann-Liouville [3, 4]. Inicialmente, comparam-se as matrizes globais resultantes de cada
abordagem; em seguida, investiga-se o caso particular em que ambas as definições de derivada
fracionária se tornam equivalentes.

2 Operadores Fracionários

Nesta seção, apresentam-se as definições dos operadores fracionários utilizados ao longo deste
estudo.

Definição 2.1. A derivada de Caputo à esquerda de ordem β > 0 de uma função dada f(x), onde
x ∈ (xL, xR), é definida como:

CD
β
xL,xf(x) =

1

Γ(m− β)

∫ x

xL

(x− s)m−β−1f (m)(s)ds, (1)

onde m é o menor número inteiro positivo maior que β (m− 1 ≤ β < m).

Definição 2.2. A derivada de Riemann-Liouville à esquerda de ordem β > 0 de uma função dada
f(x), onde x ∈ (xL, xR), é definida como:

RLD
β
xL,xf(x) =

1

Γ(m− β)

dm

dxm

∫ x

xL

(x− s)m−β−1f(s)ds, (2)

onde m é o menor número inteiro positivo maior que β (m− 1 ≤ β < m).

Seja f uma função suficientemente diferenciável. Então, a derivada fracionária de Caputo de
f de ordem β está relacionada à derivada fracionária de Riemann-Liouville de f(x) de ordem β,
pela seguinte fórmula [5, 6]:

RLD
β
xL,xf(x) = CD

β
xL,xf(x) +

m−1∑
k=0

f (k)(xL)(x− xL)
k−β

Γ(k − β + 1)
, (3)

onde f (k)(xL) representa a k-ésima derivada de f no ponto x = xL.

3 Problema Modelo

Seja Ω = (0, 1), formula-se a equação unidimensional e estacionária de difusão-advecção-reação
fracionária como:

− a
(
CD

2−β
0,x u(x)

)
+ b · ∇u(x) + cu(x) = f(x), (4a)

u(0) = 0, (4b)
u(1) = 1, (4c)

onde define-se 2− β como a ordem da derivada fracionária de Caputo à esquerda (0 ≤ β < 1), a é
o coeficiente de difusão (a > 0), b é o campo de velocidade, c é o coeficiente de decaimento e f(x)
é o termo fonte.
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3.1 Formulação Variacional
Seja u ∈ Hα(Ω) onde α = 1− β

2 , e a função teste v ∈ V , tal que:

V = {v ∈ Hα(Ω), v(0) = v(1) = 0} .

Multiplicando (4a) por v e integrando em Ω, obtemos:∫ 1

0

−a(CD
2−β
0,x u)v + b∇uv + cuv dx =

∫ 1

0

fvdx. (5)

Aplicando a integração por partes no termo da derivada fracionária, obtemos:

a(CD
γ
0,xu,∇v)Ω + (b∇u, v)Ω + (cu, v)Ω = (f, v)Ω, (6)

onde (·, ·)Ω é o produto interno no espaço Ω e γ = 1− β.

3.2 Método de Galerkin
Seja Ω = [xL, xR] um domínio finito, define-se Sh uma partição uniforme de Ω, dada por:

xL = x0 < x1 < . . . < xm−1 < xm = xR, m ∈ Z+. (7)

Denota-se ∆x = |xi−1 − xi| e Ωi = [xi−1, xi] para i = 1, 2, . . . ,m, e em seguida o espaço de
elementos finitos Vh como o conjunto de funções polinomiais por partes na malha Sh, expresso
como

Vh = {v : v|Ωi
∈ P1(Ωi), v ∈ C(Ω)},

onde P1(Ωi) é o espaço de polinômios lineares definidos em Ωi e Vh ⊂ V . As funções ϕ1, . . . , ϕm−1

de Vh utilizadas são funções lagrangeanas lineares por partes [7].
Para a definição dos termos envolvendo a derivada fracionária de Caputo, é necessário estabe-

lecer alguns lemas preliminares; os demais termos são obtidos de forma análoga ao caso de ordem
inteira.

Lema 3.1. Para i = 1, 2, . . . ,m− 1, temos:

CD
γ
xL,xϕi(x) =

1

Γ(1− γ)

∫ x

xL

(x− s)−γ∇ϕi(s)ds

e obtemos

CD
γ
xL,xϕi(x) = λ


0, se x ≤ xi−1,

(x− xi−1)
1−γ , se xi−1 ≤ x ≤ xi,

−2(x− xi)
1−γ + (x− xi−1)

1−γ , se xi ≤ x ≤ xi+1,

(x− xi+1)
1−γ − 2(x− xi)

1−γ + (x− xi−1)
1−γ , se x > xi+1,

onde 0 < γ < 1 e λ = 1
Γ(2−γ)(∆x) .

Em (6), o objetivo é obter uh ∈ Vh tal que:

a(CD
γ
0,xuh,∇vh)Ω + (b∇uh, vh)Ω + (cuh, vh)Ω = (f, vh)Ω, ∀vh ∈ Vh. (8)

Substituindo uh =

m−1∑
j=1

cjϕj(x) e vh = ϕi(x) , tal que, i = 1, ...,m− 1, obtemos:
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m−1∑
j=1

cj

[(
a CD

γ
0,xϕj(x),∇ϕi(x)

)
Ω
+

(
b∇ϕj(x), ϕi(x)

)
Ω
+

(
cϕj(x), ϕi(x)

)
Ω

]
= (f, ϕi(x)

)
Ω
.

(9)

Lema 3.2. Para i = 1, 2, . . . ,m− 1, temos:

a

∫ xi

xi−1

CD
γ
0,xϕj(x)(∇ϕi(x))dx+ a

∫ xi+1

xi

CD
γ
0,xϕj(x)(∇ϕi(x))dx = gi,j (10)

e essa relação implica que

gi,j = τ1



ki−j − ki−j+1, se j ≤ i− 2,

22−γ − 3− k2, se j = i− 1,

4− 22−γ , se j = i,

−1, se j = i+ 1,

0, se j ≥ i+ 2,

(11)

define-se kn = −(n− 2)2−γ + 3(n− 1)2−γ − 3n2−γ + (n+ 1)2−γ e τ1 = a
Γ(3−γ)∆xγ .

A matriz global é construída com base nos conceitos previamente estabelecidos, sendo expressa
a seguir:

Mi,j =



τ1(ki−j − ki−j+1), se j ≤ i− 2,

τ1(2
2−γ − 3− k2) +

b
2 + c∆x

6 , se j = i− 1,

τ1(4− 22−γ) + 2c∆x
3 , se j = i,

−τ1 − b
2 + c∆x

6 , se j = i+ 1,

0, se j ≥ i+ 2.

(12)

É importante destacar que a matriz global obtida é idêntica à encontrada na modelagem do
problema utilizando a derivada fracionária de Riemann-Liouville [3, 4]. Além disso, observa-se que,
à medida que β tende a zero, a matriz global da formulação fracionária converge para a matriz
global correspondente ao caso de ordem inteira.

Por fim, a etapa final consiste na resolução do sistema linear com a imposição das respectivas
condições de fronteira:

MC = F, (13)

em que M representa a matriz global, C é o vetor de incógnitas a ser determinado e F corresponde
ao vetor força global.

3.3 Experimentos Numéricos
Seja Ω = (0, 1), u(x) = x2 a solução exata do problema, a = 1, b = 0, 05, c = 10−8 e 60 nós.

Sendo assim, pretende-se determinar a concentração u(x), tal que:

− a
(
CD

2−β
0,x u(x)

)
+ b∇u(x) + cu(x) = − 2axβ

Γ(β + 1)
+ 2bx+ cx2, (14a)

u(0) = 0, (14b)
u(1) = 1. (14c)
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(a) (b)

Figura 1: Em (a) o teste comparando o resultado de β = 0 para a derivada de Caputo à esquerda
no termo difusivo com o caso inteiro e, em (b), o teste variando a ordem para diferentes valores

de β utilizando a derivada de Caputo à esquerda. Fonte: Elaborada pelos autores.

A Figura 1a exibe o teste realizado para o caso β = 0 e o caso de ordem inteira. Os resultados
encontrados são bastante próximos, o que era esperado, pois quando β tende a 0, o caso de ordem
inteira é recuperado. Na Figura 1b, que apresenta o teste variando os valores de β, é possível notar
que, à medida que o valor de β aumenta, a solução do problema começa a se distanciar do caso
inteiro.

Tabela 1: Teste variando a ordem da derivada de Caputo à esquerda.

Ordem da derivada (2− β) β Erro na norma L2 Tempo de execução do código
1,2 0,8 0,04809341 0,1300
1,4 0,6 0,03075610 0,1500
1,6 0,4 0,02034649 0,1200
1,8 0,2 0,01368293 0,1500
2,0 0,0 0,00925591 0,0300

Caso inteiro - 0,00925737 0,0069

Os resultados da Tabela 1 indicam que o erro aumenta à medida que o valor de β tende a
1. Observando o tempo de execução, ele é significativamente menor no caso inteiro (0,0069 s) em
comparação aos casos fracionários (aproximadamente 0,15 s). Nota-se que embora o caso β = 0
apresente erro equivalente ao do caso inteiro, o tempo de execução é cerca de quatro vezes maior,
o que evidencia o custo computacional adicional associado à abordagem fracionária.

Os resultados obtidos para este problema utilizando a derivada de Caputo são equivalentes
aos resultados obtidos com a derivada de Riemann-Liouville no termo difusivo, para cada ordem
específica. Aplicando a relação entre as derivadas fracionárias de Riemann-Liouville e Caputo e
substituindo pela solução exata dada no problema proposto, obtemos:

RLD
2−β
0,x x2 = CD

2−β
0,x x2 +

1∑
k=0

u(k)(0)xk−2+β

Γ(k − 2 + β + 1)
, (15)
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onde u(k)(0) representa a k-ésima derivada de u(x) avaliada em x = 0. Assim, a contribuição do
somatório se reduz a zero, pois tanto u(0) quanto u′(0) são nulos. Consequentemente, a derivada
fracionária de Riemann-Liouville à esquerda pode ser expressa de forma equivalente à derivada
fracionária de Caputo à esquerda:

RLD
2−β
0,x x2 = CD

2−β
0,x x2. (16)

Dessa forma, ao resolver problemas utilizando a abordagem unidimensional e estacionária da
equação de difusão-advecção-reação por meio do método de Galerkin, a implementação dos ope-
radores de Riemann-Liouville e Caputo pode, efetivamente, gerar para cada ordem específica re-
sultados equivalentes. Para isto acontecer depende de condições específicas, para este problema,
se o termo fonte é igual, ocorre a equivalência, visto que as matrizes globais encontradas são
equivalentes. Dessa forma, o problema (14a) é equivalente ao seguinte problema:

− a
(
RLD

2−β
0,x u(x)

)
+ b · ∇u(x) + cu(x) = − 2axβ

Γ(β + 1)
+ 2bx+ cx2, (17a)

u(0) = 0, (17b)
u(1) = 1. (17c)

A Tabela 2 apresenta os resultados numéricos obtidos para o caso com derivada de Riemann-
Liouville, os quais se mostram análogos aos resultados referentes ao problema (14a).

Tabela 2: Teste variando a ordem da derivada de Riemann-Liouville à esquerda.

Ordem da derivada (2− β) β Erro na norma L2 Tempo de execução do código
1,2 0,8 0,04809341 0,1300
1,4 0,6 0,03075610 0,1500
1,6 0,4 0,02034649 0,1200
1,8 0,2 0,01368293 0,1500
2,0 0,0 0,00925591 0,0300

Caso inteiro - 0,00925737 0,0069

Por fim, realizou-se o teste de refinamento para o problema modelo utilizando Caputo. Seja
u = x2 a solução exata do problema, a = 1, b = 0, 05, c = 10−8 e β = 0, 4.

Tabela 3: Teste de Refinamento.

Nós Erro na norma L2 Tempo de execução (segundos)
60 0,02034649 0,15
120 0,02009188 0,85
240 0,02000665 3,11
480 0,01997892 10,73
960 0,01996983 41,09
1920 0,01996685 170,61

Analisando o teste de refinamento dado na Tabela 3, notamos que o erro diminui lentamente com
o refinamento da malha, passando de 0, 02034649 (60 nós) para 0, 01996685 (1920 nós). Observando
o tempo de execução, dado em segundos, podemos notar que à medida que aumenta-se o número
de nós, o custo computacional aumenta, ocasionando um tempo de execução maior.
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4 Considerações Finais
Os resultados obtidos ao longo deste estudo permitiram uma análise detalhada das implicações

numéricas do uso das derivadas fracionárias de Caputo e de Riemann-Liouville na equação estaci-
onária de difusão-advecção-reação. A aplicação do método de Galerkin mostrou-se eficaz para a
formulação variacional do problema e para a comparação entre os dois operadores. Observou-se
que, apesar das semelhanças estruturais, as soluções numéricas apresentam diferenças sensíveis con-
forme a definição da derivada fracionária empregada, sobretudo quando se considera a influência da
ordem fracionária e dos parâmetros físicos envolvidos. Em particular, a equivalência teórica entre
os operadores em determinados cenários foi validada numericamente, reforçando a consistência das
formulações.

A análise realizada também pode ser estendida para problemas transientes e aplicações em
áreas como controle de processos, modelagem de materiais com memória e sistemas biológicos.
Assim, reafirma-se a importância da modelagem fracionária e dos métodos numéricos no avanço da
compreensão e solução de problemas que envolvem fenômenos de natureza não local e com efeitos
de memória.
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