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Resumo. Neste trabalho, realiza-se uma analise comparativa entre as formulagoes da equagido es-
tacionaria de difusdo-advecgao-reacao fracionéria, com derivadas de Riemann-Liouville e de Caputo
aplicadas ao termo difusivo. Desenvolve-se a formulagao variacional do problema, cuja abordagem
fracionaria é implementada por meio do método de Galerkin, com o objetivo de comparar os es-
quemas correspondentes as diferentes definigbes de derivadas fracionéarias. A solugdo numérica é
obtida com base nesse método, e testes computacionais sao realizados para ambos os operadores,
especificamente para o caso em que suas formulagées coincidem. Sao considerados diferentes valores
para a ordem fracionaria e, por fim, é conduzido um teste de refinamento da malha.

Palavras-chave. Equagao Estacionaria de Difusdo-Advecc¢ao-Reagdo, Derivada Fracionaria de Ca-
puto, Derivada Fracionaria de Riemann-Liouville, Método de Galerkin

1 Introducao

A equagao de difusdo-advecgao-reacao constitui uma ferramenta fundamental na modelagem
de fenémenos fisicos, quimicos e biologicos, nos quais o transporte de substancias é influenciado
simultaneamente por processos de difusdo, escoamento (advecgdo) e reagoes locais. Pode-se citar
como exemplo de aplicagdo os estudos de [1] e [2] que utilizaram esta equagao para andlise do
processo de dispersao de poluicao em meio aquético.

Este estudo, de carater exploratorio, tem como objetivo complementar a investigagao apre-
sentada no III Simposio Brasileiro de Calculo Fracionério, na qual foi abordada a equagao de
difusao-advecgao-reagao com a derivada de Caputo aplicada ao termo difusivo. Na ocasiao, foram
analisados diferentes cenarios por meio da variagao da ordem da derivada de Caputo, realizados
testes de refinamento da malha e foi investigada a influéncia do numero de Péclet sobre a solucéao.

A comparacdo entre as formulacoes da equacdo estacionaria de difusdo-advecgao-reagao fraci-
onaria, utilizando o método de Galerkin, constitui uma etapa relevante para o aprofundamento
da analise numérica com derivadas fracionarias. S&o considerados os casos em que a derivada
de Caputo é aplicada ao termo difusivo e comparados aos resultados obtidos com a derivada
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de Riemann-Liouville [3, 4]. Inicialmente, comparam-se as matrizes globais resultantes de cada
abordagem; em seguida, investiga-se o caso particular em que ambas as definicoes de derivada
fracionéria se tornam equivalentes.

2 Operadores Fracionarios

Nesta segao, apresentam-se as definicoes dos operadores fracionarios utilizados ao longo deste
estudo.

Definicao 2.1. A derivada de Caputo a esquerda de ordem 8 > 0 de uma fungdo dada f(x), onde
x € (zr,xR), € definida como:

CDJEL, f(x) _ ﬁ /m (x - s)m—ﬁ—lf(m)(s)ds’ (1)

onde m € o menor nimero inteiro positivo maior que B (m —1< 8 <m).

Definigao 2.2. A derivada de Riemann-Liouville a esquerda de ordem 3 > 0 de uma fun¢ao dada
f(x), onde x € (z1,xR), € definida como:

u D2, o1 (0) = [y o [ (@ = " s 2

onde m € o menor nimero inteiro positivo maior que B (m —1 < § < m).

Seja f uma fungao suficientemente diferenciavel. Entao, a derivada fracionaria de Caputo de
f de ordem f esté relacionada a derivada fracionaria de Riemann-Liouville de f(x) de ordem g,
pela seguinte formula [5, 6]:

B

B (zp) (@ — 1)k
reDE, L f(z) =cDE, . f +Zf IZ ngf)) , (3)

onde f(k)(acL) representa a k-ésima derivada de f no ponto x = .

3 Problema Modelo

Seja Q = (0, 1), formula-se a equagao unidimensional e estacionaria de difusdo-advecgao-reacao
fracionéria como:

—a (CDggﬂu(xD +b-Vu(z) + cu(z) = f(x), (4a)
u(0) =0, (4b)
u(l) =1, (4c)

onde define-se 2 — § como a ordem da derivada fracionaria de Caputo & esquerda (0 < 8 < 1), a é
o coeficiente de difusdo (a > 0), b é o campo de velocidade, ¢ é o coeficiente de decaimento e f(x)
é o termo fonte.
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3
3.1 Formulagao Variacional
Sejau € H*(Q2) onde a =1 — g, e a funcgéo teste v € V, tal que:
V={ve HYQ), v(0) =v(1l) =0}.
Multiplicando (4a) por v e integrando em €2, obtemos:
1 1
/ fa(oD(Q];Bu)v +bVuv + cuv dx = / fudz. (5)
0 0
Aplicando a integracao por partes no termo da derivada fracionaria, obtemos:
a(cDg ,u, Vo)g + (bVu,v)q + (cu,v)q = (f,v)a, (6)
onde (+,-)q é o produto interno no espago Qe y=1— 0.
3.2 Meétodo de Galerkin
Seja Q = [z, zr] um dominio finito, define-se S, uma partigdo uniforme de Q, dada por:
L =00 <T1<...<Tm-1< T =xg, mEcL. (7)
Denota-se Az = |z;—1 — z;| e Q; = [x;—1,x;] para i = 1,2,...,m, e em seguida o espago de
elementos finitos V}, como o conjunto de fung¢Ges polinomiais por partes na malha Sj, expresso
como
Vi, ={v:v]q, € Pi(%),v € C(Q)},
onde P;(€);) é o espago de polindmios lineares definidos em €2; e V3, C V. As fungdes ¢1, ..., dm_1

de V}, utilizadas s@o fungoes lagrangeanas lineares por partes [7].
Para a definicao dos termos envolvendo a derivada fracionaria de Caputo, é necessario estabe-
lecer alguns lemas preliminares; os demais termos sao obtidos de forma anéloga ao caso de ordem

inteira.
Lema 3.1. Parat=1,2,...,m — 1, temos:
1 x
DY ) - - — 8V (s)d
¢DY,u) = sy [ (@ onlayds
e obtemos
0, sex < wi_q,
— . )Y < < s
€T Ti—1 R SEX;i—1 ST S Xy,
CDgL,wQI)i(‘/L‘) =A ( ' ) 1— 1— ' '
=2z —x;)' 7+ (. —xim1) 7, sex; <z <wiyq,

(x — 2 )Y =2 — )P+ (r—2i1) Y, sex > wig,
onde 0 <y<1lel :m.

Em (6), o objetivo é obter up € V3, tal que:

a(cDg,zuh, Vop)a + (bVup,vp)a + (cun, vp)a = (f, vn)a, Yo, € Vp,. (8)
m—1
Substituindo uy, = Z cj¢;i(x) e vy = ¢;(x) , tal que, i = 1,...,m — 1, obtemos:
j=1
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4

5~ 65 (@ 0D365(0), Tor(0)g + (0W65(0), (0D + (665 (0), 61(0), o
Lema 3.2. Parat=1,2,...,m — 1, temos:

o [ oDy TN a [ D)6, @)(To@)ds = g, (10)

e essa relagao implica que

kioj—ki—jy1, sej<i-—2,
2277 —3 —ky, sej=i—1,

Gij=T144— 2277, se j =1, (11)
-1, sej=1+1,
0, sej>i+2,

define-se ky, = —(n —2)>"7+3(n—1)*>"7 =3n* 7+ (n+1)*> T em = INCER)IEE

A matriz global é construida com base nos conceitos previamente estabelecidos, sendo expressa

a seguir:
T1(ki—j — kizj+1), sej<i—2,
(22 =3 — ko) + L+ BT sej=i-1,
Mij; =4 m(4—2%7) 4 2Bz, se j =i, (12)
-1 — L4 2 sej=i+1,
0, sej>1+2.

E importante destacar que a matriz global obtida ¢ idéntica a encontrada na modelagem do
problema utilizando a derivada fracionaria de Riemann-Liouville [3, 4]. Além disso, observa-se que,
a medida que (8 tende a zero, a matriz global da formulacao fracionaria converge para a matriz
global correspondente ao caso de ordem inteira.

Por fim, a etapa final consiste na resolucao do sistema linear com a imposicao das respectivas
condigoes de fronteira:

MC =F, (13)

em que M representa a matriz global, C' é o vetor de incognitas a ser determinado e F' corresponde
ao vetor forca global.
3.3 Experimentos Numéricos

Seja Q = (0,1), u(x) = 22 a solugao exata do problema, a = 1, b = 0,05, ¢ = 1078 e 60 nos.
Sendo assim, pretende-se determinar a concentragao u(x), tal que:

2 2axP
—a (CDO;Bu(x)) +bVu(z) + cu(z) = BYCES)) + 2bx + ca?, (14a)
u(0) = 0, (14b)
u(l)=1 (14c)
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1.0 1 — Solugéo Galerkin para g = 0 101 — Solugéo Galerkin para p =0

@ Solugdo Galerkin para o Caso inteiro Solugéo Galerkin para f = 0.2
—— Solugdo Galerkin para 8 = 0.4
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Figura 1: Em (a) o teste comparando o resultado de 5 = 0 para a derivada de Caputo & esquerda
no termo difusivo com o caso inteiro e, em (b), o teste variando a ordem para diferentes valores
de $ utilizando a derivada de Caputo & esquerda. Fonte: Elaborada pelos autores.

A Figura la exibe o teste realizado para o caso f = 0 e o caso de ordem inteira. Os resultados
encontrados sdo bastante proximos, o que era esperado, pois quando 5 tende a 0, o caso de ordem
inteira é recuperado. Na Figura 1b, que apresenta o teste variando os valores de 3, é possivel notar
que, & medida que o valor de 8 aumenta, a solucao do problema comega a se distanciar do caso
inteiro.

Tabela 1: Teste variando a ordem da derivada de Caputo & esquerda.

Ordem da derivada (2—3) 3  Erro na norma L? Tempo de execugao do codigo

1,2 0,8 0,04809341 0,1300
1.4 0,6 0,03075610 0,1500
1,6 0,4 0,02034649 0,1200
1,8 0,2 0,01368293 0,1500
2,0 0,0 0,00925591 0,0300
Caso inteiro - 0,00925737 0,0069

Os resultados da Tabela 1 indicam que o erro aumenta & medida que o valor de 3 tende a
1. Observando o tempo de execugao, ele é significativamente menor no caso inteiro (0,0069 s) em
comparagio aos casos fracionarios (aproximadamente 0,15 s). Nota-se que embora o caso 5 = 0
apresente erro equivalente ao do caso inteiro, o tempo de execugao é cerca de quatro vezes maior,
o que evidencia o custo computacional adicional associado & abordagem fracionaria.

Os resultados obtidos para este problema utilizando a derivada de Caputo sao equivalentes
aos resultados obtidos com a derivada de Riemann-Liouville no termo difusivo, para cada ordem
especifica. Aplicando a relagdo entre as derivadas fracionarias de Riemann-Liouville e Caputo e
substituindo pela solugao exata dada no problema proposto, obtemos:

u(k)(o) J,'k_2+6
'k—2+p+1)

2— 2—
RLDO’IBLL‘2 = CDO,Q;B:I;2 + Z
k=0

1
(15)
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onde u®)(0) representa a k-ésima derivada de u(z) avaliada em z = 0. Assim, a contribuicio do
somatorio se reduz a zero, pois tanto u(0) quanto «'(0) sdo nulos. Consequentemente, a derivada
fracionaria de Riemann-Liouville & esquerda pode ser expressa de forma equivalente a derivada
fracionaria de Caputo & esquerda:

reDy S 2? = oDy Pa. (16)

Dessa forma, ao resolver problemas utilizando a abordagem unidimensional e estacionaria da
equagao de difusao-advecgao-reagao por meio do método de Galerkin, a implementacao dos ope-
radores de Riemann-Liouville e Caputo pode, efetivamente, gerar para cada ordem especifica re-
sultados equivalentes. Para isto acontecer depende de condigoes especificas, para este problema,
se o termo fonte é igual, ocorre a equivaléncia, visto que as matrizes globais encontradas sao
equivalentes. Dessa forma, o problema (14a) é equivalente ao seguinte problema:

2ax”

—a (RLD(%’;ﬂu(x)) +b-Vu(z) + cu(z) = TEED + 2bx + ca?, (17a)
u(0) =0, (17b)
u(l) = 1. (17¢)

A Tabela 2 apresenta os resultados numeéricos obtidos para o caso com derivada de Riemann-
Liouville, os quais se mostram anélogos aos resultados referentes ao problema (14a).

Tabela 2: Teste variando a ordem da derivada de Riemann-Liouville & esquerda.

Ordem da derivada (2—3) 3  Erro na norma L? Tempo de execucao do codigo

1,2 0,8 0,04809341 0,1300
1.4 0,6 0,03075610 0,1500
1,6 0,4 0,02034649 0,1200
1,8 0,2 0,01368293 0,1500
2,0 0,0 0,00925591 0,0300
Caso inteiro - 0,00925737 0,0069

Por fim, realizou-se o teste de refinamento para o problema modelo utilizando Caputo. Seja

u = 22 a solucdo exata do problema, a =1,b=0,05c=10"%e 3=0,4.

Tabela 3: Teste de Refinamento.

No6s  Erro na norma L? Tempo de execucao (segundos)

60 0,02034649 0,15
120 0,02009188 0,85
240 0,02000665 3,11
480 0,01997892 10,73
960 0,01996983 41,09

1920 0,01996685 170,61

Analisando o teste de refinamento dado na Tabela 3, notamos que o erro diminui lentamente com
o refinamento da malha, passando de 0, 02034649 (60 nos) para 0,01996685 (1920 nés). Observando
o tempo de execucao, dado em segundos, podemos notar que & medida que aumenta-se o niimero
de nos, o custo computacional aumenta, ocasionando um tempo de execugao maior.
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4 Consideracgoes Finais

Os resultados obtidos ao longo deste estudo permitiram uma analise detalhada das implicagoes
numéricas do uso das derivadas fracionarias de Caputo e de Riemann-Liouville na equagao estaci-
onéria de difusdo-advecgao-reagdo. A aplicagdo do método de Galerkin mostrou-se eficaz para a
formulagao variacional do problema e para a comparacao entre os dois operadores. Observou-se
que, apesar das semelhancas estruturais, as solugdbes numéricas apresentam diferengas sensiveis con-
forme a definicao da derivada fracionaria empregada, sobretudo quando se considera a influéncia da
ordem fracionéria e dos pardmetros fisicos envolvidos. Em particular, a equivaléncia teodrica entre
os operadores em determinados cenarios foi validada numericamente, reforcando a consisténcia das
formulagoes.

A analise realizada também pode ser estendida para problemas transientes e aplicagbes em
areas como controle de processos, modelagem de materiais com memoéria e sistemas bioldgicos.
Assim, reafirma-se a importancia da modelagem fracionaria e dos métodos numéricos no avango da
compreensao e solugao de problemas que envolvem fenémenos de natureza néo local e com efeitos
de memodria.
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