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Abstract. In this work, we present a new extended formulation of the semi-discrete Lagrangian-
Eulerian numerical method applied to the Korteweg-de Vries equation, which has a smooth convex
flux function. This new scheme is applied to one-dimensional scalar problems incorporating a linear
dispersive term with a constant dispersive coefficient. We present here some numerical experiments
that provide strong evidence of the method’s convergence. Whenever possible, a comparison is
made between the numerical results and exact solutions or highly accurate approximations.
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1 Introduction

Consider the initial value problem

Ou + 0y (H(u)) = pd2u, (x,t) € R x (0,77, 1
{ u(z,0) = uo(z), z € R, (1)
where ug is the initial condition, u # 0 is the dispersive constant and the third derivative is
bounded. Equation (1) represents the Korteweg-de Vries (KdV) equation when the convex flux
function is H(u) = eu? with € non-zero. The KdV equation, introduced in 1895 by Korteweg and
de Vries [9], is widely applied to describe wave phenomena, such as shallow water waves [9], and
bubble-liquid mixtures [14]|, among others. Analytical solutions have been developed for specific
problems [6], but numerical methods are critical for broader applications. Since analytical solutions
are feasible only for limited initial conditions, numerical approaches play a crucial role in studying
the physical phenomena governed by these equations.

Several recent works [2-4] have introduced and expanded Lagrangian-Eulerian numerical meth-
ods, in both the fully discrete (FDLE) and semi-discrete (SDLE) versions, for solving hyperbolic
conservation and balance law problems. In this work, we develop a semi-discrete Lagrangian-
Eulerian method for equation (1), where the flux function H characterizes the KdV equation as
described above.
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The objective of this study is to provide numerical evidence of convergence for the semi-discrete
Lagrangian-Eulerian method in (1), focusing on problems that have been well studied in the liter-
ature [5, 7, 15]. Additionally, we investigate the order of convergence of the proposed method in
several examples using the L? and L norms.

2 Semi-Discrete Lagrangian-Eulerian Numerical Scheme for
Korteweg-de Vries Equations

Due to the relevance of this type of equation, we propose here our formulation Semi-Discrete
Lagrangian-FEulerian (SDLE) for Korteweg-de Vries equations

d 1
() = =1 Py wg1) = Flujn,u)] + pltesa) s, (2)
where numeric flux F(u;,u;11) is given by
1 _ _
f(uj,uj+1) = Z |:bj+% (uj-i-% — U;r+%> + (fj + fj+1) (Uj+% + Uj+%):| s (3)
with the slope of the no-flow-curve f; = %Z”) and
_ x Az
Uj+% = Uj + T (ux)] and Uj+% = Uj41 — T (uz)j_,’_l . (4)

. are approximations of the

J
first and third derivatives, respectively, and b;, 1 =b; 1 (fj, fj+1) is a function of order (9(#)

The construction of this numerical method is carried out in a general form in the thesis work
[10], which is still in progress. The semi-discrete Lagrangian-Eulerian method (2)-(4) extends the
purely hyperbolic case presented in [2]. For the construction of the no-flow curve, we reference [1].

For convenience, we employ linear reconstruction [11]. Additionally, high-order reconstructions
of the numerical flux, as proposed in [3], can yield solutions with high-order convergence and
improved resolution.

For the preliminary CFL stability condition, we define the function F(u) = H(u) — ug%‘.

Thus, we can rewrite equation (1) in its conservative form as % + 31;;(:) = 0. The authors in
[2] demonstrated the CFL stability condition for the Lagrangian-Eulerian numerical method with
linear reconstruction applied to the hyperbolic problem. Based on this condition, we derive the

CFL stability condition for equation (1).
At™ 4| pl 1
—-— ~o ) <5 5
Ax (m]a * A 2 (5)

3 Numerical-Analytical Evidence of Convergence

Here, Az > 0 represents the spatial grid spacing, while (u,;) ; and (Ugza)

H (uy)

For our numerical experiments, we employ centered finite difference approximations for the first
and third derivatives, i.e.,

1 1
(uz); = AT (ujr1 —wj—1) and (Uges); = ALS (—uj—2 +2uj—1 — 2ujt1 +uji).  (6)

We use the following expression for b;, 1 in the numerical flux function (3)

bjyi Zm?X{\C1fj+C2fj+1|}7 (1,6 =0, (7)
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subject to the global CFL stability condition (5). Here, we are also interested in achieving high-
order temporal accuracy. For this reason, we reformulate the Runge-Kutta-Shu method [13] to
obtain the Runge-Kutta-Shu-Leap-Frog method for dispersive problems

ne1 2At" n on n n n,(on
’U,;( = uj - Az [f(ujﬂujJrl) - -F(Ujflauj )] + 2At :U‘(umfcx)ja
28 o "yt 8
U =W T AL [F (), ufi) = Fluj_p,uj)] + 288" u(us,,);, ®)
1
n+1 __ *ok
up =3 [uf +uj*]

For p = 2,00, the definitions of the relative errors |le||» (between consecutive meshes) can be
found in [7], while the definitions of the estimated order of convergence EOC, can be found in [2].

Example 1. The Korteweg-de Vries equation, in the form (1) with H(u) = %, is written as:

9
u(z,0) = 3csech? (0.51 [—nx— 6) , x€1]0,2], )
where y = —4.84 x 10™* and ¢ = 0.3. This problem, along with its evact solution u(z,t) =
3csech? (0.51 /=@ —ct) - 6), can be found [7].
T=1 T=2 T=3
REF REF REF
1 - - Numerical 1 - - Numerical 1 - - Numerical
s A s f\ s
0.5 I 0.5 i 0.5 -
o) E— /I N ] o) PN — _ e o) S N
0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
T x T

Figure 1: Example 1 using the SDLE, with mesh m = 256, (; = (x =0, CFL = 0.3. Here, the
reference (REF) is given by the exact solution.

Table 1: Performance at solving the Example 1. We have T' = 3.0 with successive meshes,
1 =G¢=0in (7), CFL = 0.3, relative errors |le||» and estimated order of convergence EOC);
(p=2or p=o00) in the L? and L spaces.

T\ m \ Az \ Ile]] L2 \EOC;\ lle]l Lee \EOC;O
256 | 7.812500e-03 | 7.493282e-04 | 1.8045 | 2.326000e-02 | 1.3319

3.0] 512 | 3.906250e-03 | 2.145200e-04 | 1.4966 | 9.240000e-03 | 1.0348
1024 | 1.953125e-03 | 7.602461e-05 | 1.2076 | 4.510000e-03 | 0.8002

Example 2. The Korteweg-de Vries equation in the form (1) with H(u) = % is written as:

duy + a(u2/2)z = ﬂa:rxzua
0> (10)
U(Z‘,O) = _lzuﬁ(log(F))a T e [Oa4} )
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a;—az

— c . c
a1+a2)’a1 - \/_Fl; Az = \/_f7

with p = —4.84 x 1074, ¢; = 0.3, ¢ = 0.1, v; = —0.48a; and vy = —1.07ay. The exact solution is
obtained for v; = a;x — ajpt + v;, with i € {1,2}. This problem, along with its exact solution, can
be found in [5].

where F = 14+€"1 +e"2+n%e"" ™2 v; = az+v;, i € {1,2}, n = (

T=2

T=3 T=4
REF REF REF
] - - Numerical ] - - Numerical ] - - Numerical
S ‘I". 3 N 3 I
0.5 | | 0.5 / A\ 0.5 H
o) — / N o I / . [0 / N
1 2 3 1 2 3 1 2 3
x x €T

Figure 2: Example 2 using the SDLE, with mesh m = 512, (; = (, =0 and CFL = 0.3. Here,
the reference (REF) is given by the exact solution.

Table 2: Performance in solving Example 2. We consider T = 4.0 with successive meshes,
(1 =¢=0in (7), and CFL = 0.3, relative errors ||e||z» and estimated order of convergence
EOC;; (p =2 or p=o00) in the L* and L™ spaces.

T ‘ m ‘ Az ‘ llell zz ‘ EOC; ‘ lle|l Lo ‘ EOCY,
512 | 7.812500e-03 | 9.178823e-04 | 1.9744 | 2.919000e-02 | 1.5056
4.0] 1024 | 3.906250e-03 | 2.335852¢-04 | 1.6359 | 1.028000e-02 | 1.2145
2048 | 1.953125e-03 | 7.516097e-05 | 1.3186 | 4.430000e-03 | 1.0164

u2

Example 3. The Korteweg-de Vries equation in the form (1) with H(u) =

5 18 written as:

Oug + a(u2/2)w = Ma;vwwuv

x €[0,2], (11)

u(z,0) = cos(mz),

{

where = —4.84 x 107%. This problem can be found in [15].

T=0.15 T =0.31831 T =1.1459
3 3 3
REF REF REF
) - - Numerical ) - - Numerical 2 . A - - Numerical
= 1 . = 10 - ,:“ ) < 1 I,n“ " ,'”'. " :.,‘
0 \ 0 \ e ol '.‘ / 'l‘ /A A ,,‘,‘ ’,' ',‘ :‘ |
p — ) p - y \ / \
0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
x T T

Figure 3: Example 3 using the SDLE, with mesh m = 1024, (; = (; = 0 and CF'L = 0.3. Here,
the reference (REF) is the numerical solution of the method proposed by [15] on a very fine mesh.
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Table 3: Performance in solving Example 3. We consider T' = 1.11459 (3.6/7) with successive
meshes, (1 = (o =0 in (7), and CFL = 0.3, relative errors ||le||» and estimated order of
convergence FOC} (p = 2 or p = o0) in the L? and L™ spaces.

T | m [ Az | el [ BOCG; [ el | EOCL
256 | 7.812500e-03 | 6.340419e-03 | 2.5175 | 1.228625e-01 | 1.5659
3.6/m| 512 | 3.906250e-03 | 1.107341e-03 | 1.5024 | 4.150000e-02 | 0.9690
1024 | 1.953125e-03 | 3.908468e-04 | 1.2717 | 2.120000e-02 | 0.9597

Example 4. The Korteweg-de Vries equation in the form (1) with H(u) = “72 is written as:

5

12
u(z,0) = 12 Zcf sech? (¢;(z — x;)), € [~150,150], (12)
i=1
where p = —1.0, ¢; = 0.3, co = 0.25, c3 = 0.2, ¢4 = 0.15, ¢5 = 0.1, ;1 = —120, 2 = —90,
x3 = —60, x4 = —30 and x5 = 0. This problem can be found in [5].

T=1 T = 200 T =300

1 1 1

05 205 05

0 0 0

-100 0 100 -100 0 100 -100 0 100
X x
T =400 T =500 T =600
1 1 1
205 205 205
0 0 0
-100 0 100 -100 0 100 -100 0 100
x

T T

Figure 4: Example 4 using the SDLE method, with {; = {; = 0 in (7) and CFL = 0.3. Here,
Az = 1.464844 x 107! (m = 2048), and At™ is subject to the CFL stability condition (5)
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Figure 5: References for the solution of Example 4. Source: Article [5].
4 Final Remarks

In this work, we have verified the simplicity, versatility, robustness, and potential of the ex-
tended Semi-Discrete Lagrangian-FEulerian numerical method for the KdV equation. The numerical
solutions obtained in the experiments demonstrate high consistency. We present and discuss numer-
ical experiments involving complex problems, providing strong numerical evidence that validates
the convergence of the method.

Our approach has also been successfully applied to the modified Korteweg-de Vries (mKdV)
equations and to two-dimensional dispersive conservation law equations. As a next step, we aim to
generalize our approach to other intricate diffusive-dispersive models in two- and three-dimensional
spaces to address state-of-the-art questions in nonlinear modeling related to internal waves (e.g.,
the Benjamin-Ono and Intermediate Long Wave equations, as in [12]) and to study soliton stability
and interactions in 3D (e.g., the Zakharov-Kuznetsov equation, as in [8]).

This work is part of the academic thesis study of the PhD student Erivaldo Diniz de Lima
(2022—-in progress, expected defense in February 2026). The thesis topic at PPGMA/IMECC
(Applied Mathematics) is: A Semi-Discrete Lagrangian-Eulerian Method for Diffusive-Dispersive
Conservation Laws.
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