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Abstract. In this work, we present a new extended formulation of the semi-discrete Lagrangian-
Eulerian numerical method applied to the Korteweg-de Vries equation, which has a smooth convex
flux function. This new scheme is applied to one-dimensional scalar problems incorporating a linear
dispersive term with a constant dispersive coefficient. We present here some numerical experiments
that provide strong evidence of the method’s convergence. Whenever possible, a comparison is
made between the numerical results and exact solutions or highly accurate approximations.
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1 Introduction
Consider the initial value problem{

∂tu+ ∂x(H(u)) = µ∂3
xu, (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R, (1)

where u0 is the initial condition, µ ̸= 0 is the dispersive constant and the third derivative is
bounded. Equation (1) represents the Korteweg-de Vries (KdV) equation when the convex flux
function is H(u) = εu2 with ε non-zero. The KdV equation, introduced in 1895 by Korteweg and
de Vries [9], is widely applied to describe wave phenomena, such as shallow water waves [9], and
bubble-liquid mixtures [14], among others. Analytical solutions have been developed for specific
problems [6], but numerical methods are critical for broader applications. Since analytical solutions
are feasible only for limited initial conditions, numerical approaches play a crucial role in studying
the physical phenomena governed by these equations.

Several recent works [2–4] have introduced and expanded Lagrangian-Eulerian numerical meth-
ods, in both the fully discrete (FDLE) and semi-discrete (SDLE) versions, for solving hyperbolic
conservation and balance law problems. In this work, we develop a semi-discrete Lagrangian-
Eulerian method for equation (1), where the flux function H characterizes the KdV equation as
described above.
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The objective of this study is to provide numerical evidence of convergence for the semi-discrete
Lagrangian-Eulerian method in (1), focusing on problems that have been well studied in the liter-
ature [5, 7, 15]. Additionally, we investigate the order of convergence of the proposed method in
several examples using the L2 and L∞ norms.

2 Semi-Discrete Lagrangian-Eulerian Numerical Scheme for
Korteweg-de Vries Equations

Due to the relevance of this type of equation, we propose here our formulation Semi-Discrete
Lagrangian-Eulerian (SDLE) for Korteweg-de Vries equations

d

dt
uj(t) = − 1

∆x
[F(uj , uj+1)−F(uj−1, uj)] + µ(uxxx)j , (2)

where numeric flux F(uj , uj+1) is given by
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1
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with the slope of the no-flow-curve fj =
H(uj)
uj

and
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(ux)j and u+
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4
(ux)j+1 . (4)

Here, ∆x > 0 represents the spatial grid spacing, while (ux)j and (uxxx)j are approximations of the
first and third derivatives, respectively, and bj+ 1

2
= bj+ 1

2
(fj , fj+1) is a function of order O(H(u)

u ).
The construction of this numerical method is carried out in a general form in the thesis work

[10], which is still in progress. The semi-discrete Lagrangian-Eulerian method (2)-(4) extends the
purely hyperbolic case presented in [2]. For the construction of the no-flow curve, we reference [1].

For convenience, we employ linear reconstruction [11]. Additionally, high-order reconstructions
of the numerical flux, as proposed in [3], can yield solutions with high-order convergence and
improved resolution.

For the preliminary CFL stability condition, we define the function F (u) = H(u) − µ∂2u
∂x2 .

Thus, we can rewrite equation (1) in its conservative form as ∂u
∂t + ∂F (u)

∂x = 0. The authors in
[2] demonstrated the CFL stability condition for the Lagrangian-Eulerian numerical method with
linear reconstruction applied to the hyperbolic problem. Based on this condition, we derive the
CFL stability condition for equation (1).

∆tn

∆x

(
max

j

∣∣∣∣H(uj)

uj

∣∣∣∣+ 4|µ|
∆x2

)
⩽

1

2
. (5)

3 Numerical-Analytical Evidence of Convergence
For our numerical experiments, we employ centered finite difference approximations for the first

and third derivatives, i.e.,

(ux)j =
1

2∆x
(uj+1 − uj−1) and (uxxx)j =

1

2∆x3
(−uj−2 + 2uj−1 − 2uj+1 + uj+2) . (6)

We use the following expression for bj+ 1
2

in the numerical flux function (3)

bj+ 1
2
= max

j
{|ζ1fj + ζ2fj+1|} , ζ1, ζ2 ⩾ 0, (7)
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subject to the global CFL stability condition (5). Here, we are also interested in achieving high-
order temporal accuracy. For this reason, we reformulate the Runge-Kutta-Shu method [13] to
obtain the Runge-Kutta-Shu-Leap-Frog method for dispersive problems

u∗
j = un−1

j − 2∆tn

∆x

[
F(un

j , u
n
j+1)−F(un

j−1, u
n
j )
]
+ 2∆tnµ(un

xxx)j ,
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j − 2∆tn
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j , u
∗
j+1)−F(u∗

j−1, u
∗
j )
]
+ 2∆tnµ(u∗

xxx)j ,

un+1
j =

1

2

[
un
j + u∗∗

j

]
.

(8)

For p = 2,∞, the definitions of the relative errors ∥e∥Lp (between consecutive meshes) can be
found in [7], while the definitions of the estimated order of convergence EOC∗

p can be found in [2].

Example 1. The Korteweg-de Vries equation, in the form (1) with H(u) = u2

2 , is written as: ∂ut + ∂(u2/2)x = µ∂xxxu,

u(x, 0) = 3c sech2
(
0.5

√
− c

µx− 6
)
, x ∈ [0, 2] ,

(9)

where µ = −4.84 × 10−4 and c = 0.3. This problem, along with its exact solution u(x, t) =
3c sech2

(
0.5

√
− c

µ (x− ct)− 6
)
, can be found [7].
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Figure 1: Example 1 using the SDLE, with mesh m = 256, ζ1 = ζ2 = 0, CFL = 0.3. Here, the
reference (REF) is given by the exact solution.

Table 1: Performance at solving the Example 1. We have T = 3.0 with successive meshes,
ζ1 = ζ2 = 0 in (7), CFL = 0.3, relative errors ∥e∥Lp and estimated order of convergence EOC∗

p

(p = 2 or p = ∞) in the L2 and L∞ spaces.

T m ∆x ∥e∥L2 EOC∗
2 ∥e∥L∞ EOC∗

∞

3.0
256 7.812500e-03 7.493282e-04 1.8045 2.326000e-02 1.3319
512 3.906250e-03 2.145200e-04 1.4966 9.240000e-03 1.0348
1024 1.953125e-03 7.602461e-05 1.2076 4.510000e-03 0.8002

Example 2. The Korteweg-de Vries equation in the form (1) with H(u) = u2

2 is written as:
∂ut + ∂(u2/2)x = µ∂xxxu,

u(x, 0) = −12µ
∂2

∂x2
(log(F )), x ∈ [0, 4] ,

(10)
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where F = 1+eν1+eν2+η2eν1+ν2 , νi = aix+νi, i ∈ {1, 2}, η =
(

a1−a2

a1+a2

)
, a1 =

√
− c1

µ , a2 =
√
− c2

µ ,

with µ = −4.84× 10−4, c1 = 0.3, c2 = 0.1, ν1 = −0.48a1 and ν2 = −1.07a2. The exact solution is
obtained for νi = aix− a3iµt+ νi, with i ∈ {1, 2}. This problem, along with its exact solution, can
be found in [5].
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Figure 2: Example 2 using the SDLE, with mesh m = 512, ζ1 = ζ2 = 0 and CFL = 0.3. Here,
the reference (REF) is given by the exact solution.

Table 2: Performance in solving Example 2. We consider T = 4.0 with successive meshes,
ζ1 = ζ2 = 0 in (7), and CFL = 0.3, relative errors ∥e∥Lp and estimated order of convergence

EOC∗
p (p = 2 or p = ∞) in the L2 and L∞ spaces.

T m ∆x ∥e∥L2 EOC∗
2 ∥e∥L∞ EOC∗

∞

4.0
512 7.812500e-03 9.178823e-04 1.9744 2.919000e-02 1.5056
1024 3.906250e-03 2.335852e-04 1.6359 1.028000e-02 1.2145
2048 1.953125e-03 7.516097e-05 1.3186 4.430000e-03 1.0164

Example 3. The Korteweg-de Vries equation in the form (1) with H(u) = u2

2 is written as:{
∂ut + ∂(u2/2)x = µ∂xxxu,

u(x, 0) = cos(πx), x ∈ [0, 2] ,
(11)

where µ = −4.84× 10−4. This problem can be found in [15].
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Figure 3: Example 3 using the SDLE, with mesh m = 1024, ζ1 = ζ2 = 0 and CFL = 0.3. Here,
the reference (REF) is the numerical solution of the method proposed by [15] on a very fine mesh.
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Table 3: Performance in solving Example 3. We consider T = 1.11459 (3.6/π) with successive
meshes, ζ1 = ζ2 = 0 in (7), and CFL = 0.3, relative errors ∥e∥Lp and estimated order of

convergence EOC∗
p (p = 2 or p = ∞) in the L2 and L∞ spaces.

T m ∆x ∥e∥L2 EOC∗
2 ∥e∥L∞ EOC∗

∞

3.6/π
256 7.812500e-03 6.340419e-03 2.5175 1.228625e-01 1.5659
512 3.906250e-03 1.107341e-03 1.5024 4.150000e-02 0.9690
1024 1.953125e-03 3.908468e-04 1.2717 2.120000e-02 0.9597

Example 4. The Korteweg-de Vries equation in the form (1) with H(u) = u2

2 is written as:


∂ut + ∂(u2/2)x = µ∂xxxu,

u(x, 0) = 12

5∑
i=1

c2i sech
2 (ci(x− xi)) , x ∈ [−150, 150] ,

(12)

where µ = −1.0, c1 = 0.3, c2 = 0.25, c3 = 0.2, c4 = 0.15, c5 = 0.1, x1 = −120, x2 = −90,
x3 = −60, x4 = −30 and x5 = 0. This problem can be found in [5].
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Figure 4: Example 4 using the SDLE method, with ζ1 = ζ2 = 0 in (7) and CFL = 0.3. Here,
∆x = 1.464844× 10−1 (m = 2048), and ∆tn is subject to the CFL stability condition (5).
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Figure 5: References for the solution of Example 4. Source: Article [5].

4 Final Remarks
In this work, we have verified the simplicity, versatility, robustness, and potential of the ex-

tended Semi-Discrete Lagrangian-Eulerian numerical method for the KdV equation. The numerical
solutions obtained in the experiments demonstrate high consistency. We present and discuss numer-
ical experiments involving complex problems, providing strong numerical evidence that validates
the convergence of the method.

Our approach has also been successfully applied to the modified Korteweg-de Vries (mKdV)
equations and to two-dimensional dispersive conservation law equations. As a next step, we aim to
generalize our approach to other intricate diffusive-dispersive models in two- and three-dimensional
spaces to address state-of-the-art questions in nonlinear modeling related to internal waves (e.g.,
the Benjamin-Ono and Intermediate Long Wave equations, as in [12]) and to study soliton stability
and interactions in 3D (e.g., the Zakharov-Kuznetsov equation, as in [8]).

This work is part of the academic thesis study of the PhD student Erivaldo Diniz de Lima
(2022–in progress, expected defense in February 2026). The thesis topic at PPGMA/IMECC
(Applied Mathematics) is: A Semi-Discrete Lagrangian-Eulerian Method for Diffusive-Dispersive
Conservation Laws.
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