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Resumo. Este trabalho apresenta os métodos QR-MFS, SVD-MFS e Hybrid-MFS, que abordam o
problema do mau condicionamento das matrizes envolvidas na resolução pelo método das soluções
fundamentais (MFS) do problema de Dirichlet para a equação de Laplace. Além disso, propomos
uma variação do método QR-MFS que garante um número de condição igual a 1. Esse novo método,
denominado QRGS-MFS, é então utilizado para construir uma variante do Hybrid-MFS, chamada
HybridGS-MFS. Os resultados numéricos demonstram que essas abordagens superam o método
tradicional.

Palavras-chave. Equação de Laplace, Método das Soluções Fundamentais, Mau Condicionamento

1 Introdução

O problema de Dirichlet para a equação de Laplace é definido por

∆u = 0, em Ω, (1)
u = g, em ∂Ω, (2)

onde ∆ denota o operador laplaciano, Ω ⊂ R3 é um domínio limitado e suave, e g é uma função
prescrita sobre a fronteira ∂Ω.

O Método das Soluções Fundamentais (MFS) tem sido amplamente aplicado na resolução de
problemas envolvendo equações diferenciais parciais. Esse método destaca-se por ser verdadeira-
mente sem malha e de implementação computacional relativamente simples.

No MFS, a solução numérica é expressa como uma combinação linear de soluções fundamentais
da equação de Laplace, ou seja,

unS
(x) =

nS∑
n=1

cDn Φ(x, yn), x ∈ Ω, yn ∈ ∂Ω̂, (3)
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onde Ω é o fecho de Ω e Ω̂ é uma bola fechada do R3 tal que Ω ⊂ int(Ω̂), isto é, Ω está contido no
interior de Ω̂. Os coeficientes cDn ∈ R devem ser determinados, os pontos yn pertencem à superfície
∂Ω̂, e Φ representa a solução fundamental da equação de Laplace em R3, dada por

Φ(x, y) =
1

4π∥x− y∥
, x ̸= y, (4)

sendo ∥x− y∥ a distância euclidiana entre os pontos x e y.
A aproximação em (3) em parte é justificada por resultados sobre densidade que provam que

span{Φ(•, y)|Ω : y ∈ Ω̂} é denso em L2(∂Ω) [1].
Desta forma, uma vez que a representação da forma (3) satisfaz a equação de Laplace, para

obter a solução numérica utilizando o MFS colocamos a equação (2), considerando nc pontos de
colocação e ns pontos fonte, e, em seguida, resolvemos para cD a equação matricial

A(C)cD = b, (5)

onde A
(C)
m,n = Φ(xm, yn) e bm = g(xm) para m = 1, 2, . . . , nc, n = 1, 2, . . . , ns. Obtidos assim os

coeficientes no vetor cD, podemos aproximar a solução para ne pontos de avaliação pela simples
multiplicação matricial

u(E) = A(E)cD, (6)

onde A
(E)
m,n = Φ(xm, yn) para m = 1, 2, . . . , ne e xm são os pontos de avaliação. Referiremos a este

método como Direct-MFS.
Sobre o MFS há ainda dois problemas a serem totalmente esclarecidos, um sobre a localização

ótima dos pontos fonte e o outro sobre a redução do mau condicionamento da matriz A(C). Em-
bora a melhor localização dos pontos fonte tenha sido amplamente estudada, há poucos trabalhos
dedicados a reduzir o mau condicionamento [2]. Recentemente, em [2] foi apresentado um método
capaz de evitar completamente o mau condicionamento em domínios planares. Essa técnica tem
sido estendida a outros problemas como em [3] e para domínios limitados estrelados em 3D [4],
com superfície dada por

∂Ω =
{
(x, y, z) = r(θ, ϕ) (cosϕ sin θ, sinϕ sin θ, cos θ) , 0 ≤ θ ≤ π, −π ≤ ϕ < π

}
, (7)

onde r(θ, ϕ) representa a função radial.
O presente artigo tem o objetivo de explorar as técnicas apresentadas em [4] e fornecer uma

variação para o método QR–MFS e Hybrid–MFS. Na seção 2 descrevemos o método SVD–MFS,
QR–MFS e Hybrid–MFS. Na seção 3, abordamos o método QRGS–MFS e o método HybridGS–
MFS. Na seção 4, apresentamos os resultados numéricos e na 5 as conclusões.

2 SVD–MFS, QR–MFS e Hybrid–MFS

Vamos apresentar de forma concisa os métodos, remetendo para [4] para mais detalhes.
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2.1 SVD–MFS
Seja x = (r, ω, φ) e y = (R, ε, η) as coordenadas esféricas de x e y. Com a expansão das esféricas

harmônicas em [5], obtemos para |x| < |y|,

1

4π∥x− y∥
=

∞∑
k=0

1

2k + 1

rk

Rk+1

k∑
m=−k

Y m
k (ω, φ)Y m

k (ε, η) (8)

=

∞∑
k=0

k∑
m=−k

rkΩ
2k + 1

Y m
k (ε, η)

Rk+1

rkY m
k (ω, φ)

rkΩ
,

onde rkΩ := maxx∈∂Ω ∥x∥ e Y m
n são as esféricas harmônicas de grau n e ordem m.

Assim, podemos reescrever
(
A(C)

)T
, onde o símbolo T representa a matriz transposta, de forma

aproximada como sendo a multiplicação A(C) ≈ MF (C), onde

M =



1
R1

1
Y 0
0 (ε1, η1)

r0Ω
1 . . . 1

RK+1
1

Y −K
K (ε1, η1)

rKΩ
2K+1 . . . 1

RK+1
1

Y K
K (ε1, η1)

rKΩ
2K+1

1
R1

2
Y 0
0 (ε2, η2)

r0Ω
1 . . . 1

RK+1
2

Y −K
K (ε2, η2)

rKΩ
2K+1 . . . 1

RK+1
2

Y K
K (ε2, η2)

rKΩ
2K+1

...
...

...
. . .

...
1

R1
ns

Y 0
0 (εns , ηns)

r0Ω
1 . . . 1

RK+1
ns

Y −K
K (εns , ηns)

rKΩ
2K+1 . . . 1

RK+1
ns

Y K
K (εns , ηns)

rKΩ
2K+1

 (9)

e

F (C) =



r0(θ1,ϕ1)
r0Ω

Y 0
0 (ω, φ)

r0(θ2,ϕ2)
r0Ω

Y 0
0 (ω, φ) . . .

r0(θnc ,ϕnc)

r0Ω
Y 0
0 (ω, φ)

...
...

. . .
...

rK(θ1,ϕ1)

rKΩ
Y −K
K (ω, φ) rK(θ2,ϕ2)

rKΩ
Y −K
K (ω, φ) . . .

rK(θnc ,ϕnc )

rKΩ
Y −K
K (ω, φ)

...
...

. . .
...

rK(θ1,ϕ1)

rKΩ
Y K
K (ω, φ) rK(θ2,ϕ2)

rKΩ
Y K
K (ω, φ) . . .

rK(θnc ,ϕnc )

rKΩ
Y K
K (ω, φ)


, (10)

com K := max (K0, ⌈
√
ns − 1⌉) e

K0 =

⌈
ln (ϵ(R− r))

ln r
R

− 1

⌉
. (11)

Aplicando a decomposição em valores singulares na matriz M , obtemos M = USV ∗, onde U
e V ∗ são matrizes unitárias e S é uma matriz diagonal com entradas não negativas. Uma vez
que K > ns podemos escrever a multiplicação SV ∗ como S1V

∗
1 , onde S1 é uma matriz diagonal

quadrada formada com os valores positivos de S e V ∗
1 é uma matriz formada pelas ns primeiras

linhas de V ∗.
Por simples multiplicação matricial [4], a equação (5) pode ser reescrita como

(V ∗
1 F

(C))T cSV D = b, (12)

onde cSV D := (S1)
TUT cD. Com o valor de cSV D, que agora obtemos evitando o mau condiciona-

mento presente em M , e construindo a matriz F (E) como fizemos em F (C), mas com os ne pontos
de avaliação, obtemos os valores de u nos pontos de avaliação por

u(E) = (V ∗
1 F

(E))T cSV D. (13)
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2.2 QR–MFS
Para a norma euclidiana foi provado em [4] que quando realizamos a factorização QR reduzida

na matriz A = QR o número de condição de A é igual ao número de condição de R. Portanto,
resolver a equação da forma

RcD = Q∗b, (14)
não evita o mau condicionamento. Uma forma de contornar o mau condicionamento é construir
uma matriz M =

[
A(C)

A(E)

]
e aplicar a factorização QR reduzida à matriz M, obtendo

M =

[
Q(C)R

Q(E)R

]
, (15)

onde Q(C) e Q(E) têm, respectivamente, as mesmas dimensões de A(C) e A(E). Assim, com a
equação (5) obtemos

Q(C)cQR = b, (16)
onde cQR = RcD. Dessa forma, a solução numérica dos pontos de avaliação será dada por

u(E) = Q(E)cQR. (17)

2.3 Hybrid–MFS
O método Hybrid-MFS é originado da combinação dos métodos MFS-SVD e QR-MFS, isto é,

precisamos tratar o mau condicionamento presente em F (C) e para isso, vamos construir a matriz
P tal que

P =

[
(F (C))T

(F (E))T

]
, (18)

e usando a fatoração QR reduzida podemos escrever

PT =

[
RTQ(C)

RTQ(E)

]
. (19)

Agora, a matriz
(
A(C)

)T
pode ser aproximada por MRTQ(C). Definindo M̃ := MRT e apli-

cando sobre M̃ o método SVD–MFS podemos reescrever a equação (5) como

(Ṽ ∗
1 Q

(C))T cH = b, (20)

onde cH := (S̃1)
T ŨT cD. Calculada cH obtemos a solução numérica para os pontos de avaliação

por

u(E) = (Ṽ ∗
1 Q

(E))T cH . (21)

3 Modificando a Fatorização QR
Ao aplicar a fatorização QR reduzida na matriz M, a matriz Q(C) resultante não é unitária.

Conjeturamos que Q(C) é bem condicionada, mas permanece um problema em aberto a sua prova
teórica.

Para contornar essa limitação, podemos encontrar matrizes Q(C)
1 , Q(E)

1 e R1 com Q
(C)
1 unitária

tal que [
Q(C)

Q(E)

]
=

[
Q

(C)
1

Q
(E)
1

]
R1, (22)

aplicando o algoritmo de Gram-Schmidt modificado às primeiras nc linhas.
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3.1 QRGS–MFS e HybridGS–MFS

A partir da nova fatorização, adaptamos os métodos QR–MFS e Hybrid–MFS. No QRGS–MFS,
a equação (16) é reescrita como

Q
(C)
1 cQRGS = b, (23)

onde cQRGS = R1RcD. Os pontos de avaliação são aproximados por

u(E) = Q
(E)
1 cQRGS . (24)

No HybridGS–MFS, utilizamos a nova fatoração para a matriz F , permitindo reescrever a
equação (20) como

(Ṽ ∗
1 Q

(C)
1 )T cHGS = b, (25)

sendo os pontos de avaliação aproximados por

u(E) = (Ṽ ∗
1 Q

(E)
1 )cHGS . (26)

4 Resultados Numéricos

Apresentamos os resultados numéricos para um domínio cuja fronteira é parametrizada pela
equação (7), na qual a função radial é dada por

r(θ, ϕ) = 0.8

(
cos(3ϕ) +

√
7− sin2(3ϕ)

) 1
3

. (27)

Neste exemplo, consideramos nc ≈ 3ne. Os pontos fonte foram localizados sobre uma esfera de
raio R = 3 e a função de contorno é dada por g(x, y, z) = x2y2z2.

Para estimar o erro, consideramos a norma discreta ℓ∞ em ∂Ω em aproximadamente 10.000
pontos de contorno e definimos ϵΩ := ∥u − u(E)∥ℓ∞(∂Ω), que representa o erro absoluto máximo
entre a solução analítica u e a solução numérica u(E). Além disso, o número de condição da matriz
do sistema, denotado por κ2(·), é dado pela razão

κ2(·) =
σmax(·)
σmin(·)

, (28)

onde σmax e σmin representam, respectivamente, os maiores e menores valores singulares.
Os resultados numéricos foram obtidos com o Matlab 2024 em um notebook com processador

11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, 20 GB de RAM, rodando Windows 11.
Observamos na Figura 1 que o método Direct–MFS sofre uma quebra devido ao mau condicio-

namento, aproximadamente para ns = 1000. Por outro lado, os métodos QR–MFS e QRGS–MFS,
apesar de serem bem condicionados, apresentam uma quebra, mas ainda fornecem resultados su-
periores ao Direct–MFS. Já os métodos SVD–MFS, Hybrid–MFS e HybridGS–MFS continuam
a se aproximar da solução com o aumento de ns. O método SVD–MFS é eficaz na redução do
mau condicionamento e continua a se aproximar da solução, ao contrário dos métodos QR–MFS e
QRGS–MFS, que possuem números de condição baixos, mas apresentam falhas na aproximação.
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Figura 1: O gráfico à esquerda mostra o erro de aproximação entre os métodos Direct–MFS, QR–MFS,
Hybrid–MFS, SVD–MFS, QRGS–MFS e HybridGS–MFS à medida que o parâmetro ns aumenta. O
gráfico à direita apresenta o número de condição das matrizes envolvidas em cada um dos métodos.

Fonte: autoria própria.

5 Considerações Finais

Apresentamos abordagens para reduzir o mau condicionamento do método Direct–MFS. Os
métodos QRGS–MFS e HybridGS–MFS são os mais caros em termos de computação, pois pre-
cisam realizar duas e três fatorizações, respectivamente. A vantagem do QRGS–MFS é que seu
número de condição é sempre igual a 1, mas essa condição não melhora a sua aproximação quando
comparado com o QR–MFS. Esperamos que, em trabalhos futuros, abordagens similares possam
ser consideradas para outros tipos de PDEs. Essas abordagens abrem novas possibilidades quanto
à escolha da localização dos pontos fonte sem o efeito do mau condicionamento.

6 Anexo I

O código em MATLAB para implementar a fatorização modificada de Gram-Schmidt em uma
matriz Q, considerando apenas as primeiras n_c linhas, é apresentado a seguir

function [Q1, R1] = modGS(n_c, Q)
n = size(Q, 1); % Número de linhas de Q
p = size(Q, 2); % Número de colunas de Q
m = n_c; % Número de linhas a serem processadas
Q1 = zeros(n, p); % Inicializa Q1
R1 = zeros(p, p); % Inicializa R1

for k = 1:p
Q1(:, k) = Q(:, k); % Copia a k-ésima coluna de Q para Q1
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for i = 1:k-1
R1(i, k) = Q1(1:m, i)’ * Q1(1:m, k); % Produto interno
Q1(:, k) = Q1(:, k) - R1(i, k) * Q1(:, i); % Ortogonalização

end

R1(k, k) = norm(Q1(1:m, k)); % Norma da coluna k
Q1(:, k) = Q1(:, k) / R1(k, k); % Normalização

end
end
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