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Resumo. Este trabalho apresenta os métodos QR-MFS, SVD-MFS e Hybrid-MFS, que abordam o
problema do mau condicionamento das matrizes envolvidas na resolugdo pelo método das soluges
fundamentais (MFS) do problema de Dirichlet para a equagao de Laplace. Além disso, propomos
uma variagdo do método QR-MF'S que garante um nimero de condigao igual a 1. Esse novo método,
denominado QRGS-MFS, é entao utilizado para construir uma variante do Hybrid-MFS, chamada
HybridGS-MFS. Os resultados numéricos demonstram que essas abordagens superam o método
tradicional.

Palavras-chave. Equagao de Laplace, Método das Solugdes Fundamentais, Mau Condicionamento

1 Introducao

O problema de Dirichlet para a equacao de Laplace é definido por

Au =0, em €, (1)
u=g, em 02, (2)

onde A denota o operador laplaciano, 2 C R? ¢ um dominio limitado e suave, e g é uma funcéo
prescrita sobre a fronteira 9f2.

O Método das Solugoes Fundamentais (MFS) tem sido amplamente aplicado na resolucao de
problemas envolvendo equagoes diferenciais parciais. Esse método destaca-se por ser verdadeira-
mente sem malha e de implementagao computacional relativamente simples.

No MFS, a solugao numérica é expressa como uma combinagao linear de solugoes fundamentais
da equagao de Laplace, ou seja,

ns

Ung () =Y cBO(z,y,), 2€Q, v, €09, (3)

n=1
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onde Q ¢ o fecho de Q e Q) ¢ uma bola fechada do R? tal que O C int(Q), isto &, € esta contido no
interior de §2. Os coeficientes c2 € R devem ser determinados, os pontos ¥, pertencem & superficie
09, e ® representa a solucio fundamental da equacio de Laplace em R3, dada por

1

d - -
(z,y) e p—k

T # vy, (4)

sendo ||z — y|| a distancia euclidiana entre os pontos x e y.

A aproximagao em (3) em parte é justificada por resultados sobre densidade que provam que
span{®(e,y)|q : y € Q} & denso em L?(99) [1].

Desta forma, uma vez que a representagio da forma (3) satisfaz a equacdo de Laplace, para

obter a solugdo numeérica utilizando o MFS colocamos a equagéo (2), considerando n. pontos de
colocagao e ng pontos fonte, e, em seguida, resolvemos para cP a equagao matricial

AP = b, (5)

onde Ag% = O(Zym,Yn) € by = g(am) para m = 1,2,...,n,, n = 1,2,...,n,. Obtidos assim os
coeficientes no vetor ¢”, podemos aproximar a solucio para n. pontos de avaliacio pela simples
multiplicagao matricial

u® = AB) P (6)

onde Aﬁf% = ®(xy,,yn) param =1,2,...,n,. € x,, sd0 os pontos de avaliagio. Referiremos a este
método como Direct-MFS.

Sobre o MFS ha ainda dois problemas a serem totalmente esclarecidos, um sobre a localizagao
6tima dos pontos fonte e o outro sobre a reducao do mau condicionamento da matriz A(¢). Em-
bora a melhor localizagao dos pontos fonte tenha sido amplamente estudada, ha poucos trabalhos
dedicados a reduzir o mau condicionamento [2]. Recentemente, em [2] foi apresentado um método
capaz de evitar completamente o mau condicionamento em dominios planares. Essa técnica tem
sido estendida a outros problemas como em [3]| e para dominios limitados estrelados em 3D [4],
com superficie dada por

0N = {(x,y,z) =71(6,9) (cos¢ sinf, sing sinh, cosh) ,0<0 <7, -7 << 7T}, (7)

onde (0, ¢) representa a fungao radial.

O presente artigo tem o objetivo de explorar as técnicas apresentadas em [4] e fornecer uma
variacao para o método QR-MFS e Hybrid-MFS. Na se¢ao 2 descrevemos o método SVD-MFS,
QR-MFS e Hybrid—-MFS. Na secao 3, abordamos o método QRGS-MFS e o método HybridGS—
MFS. Na segao 4, apresentamos os resultados numéricos e na 5 as conclusoes.

2 SVD-MFS, QR-MFS e Hybrid—MFS

Vamos apresentar de forma concisa os métodos, remetendo para [4] para mais detalhes.
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2.1 SVD-MFS

Sejax = (r,w,p) ey = (R, &,n) as coordenadas esféricas de z e y. Com a expansao das esféricas
harmonicas em [5], obtemos para |z| < |y,

1 > 1 rk koo
B ym ym
4|z — y| kZ:O ok + 1 Rk+1 L (W, )Y (e m) (8)
~ Kk m Yo o)
— Z Z TSk] Yk (67 T’) rkYk ]va 90)
k+1 )
k=0 m=—k 2k+1 R TQ

onde 78 1= max,caq ||z]| e Y,™ sdo as esféricas harmonicas de grau n e ordem m.

. T .
Assim, podemos reescrever (A(C)) , onde o simbolo T representa a matriz transposta, de forma
aproximada como sendo a multiplicacdo A©) ~ MF(©) onde

0 K K
%%YOO(517UI)% R)C1+1Y]C’C(Elanl)2]2% ﬁyléc(elanl)mgil
BRAE )ﬁ 4 Vok(e )i ;Y’C(a ) T
M= R Y0 (82,72)7 REFTIK 2;7M2) 51 REFTIK 2,M2) 37 (9)
1 yo0 T 1 Y—’C S 1_yK LAY
RL 0 Engy )5 - rREFIK (ﬁuﬁlm)ﬁ o REAL ;c(’fnsﬂlns)m
(§]
[ r201,00)07 0(02,02)3-07, . Ong>Pne) 07 oy ]
HYIw,e) YW, ¢) A Y0 (w, )
c K0y, e —K (62, e -K K One Pne .7%
FO = | =Qetly Mo, o) =2 w,0) %YK (w,@)| . (10)
(01, TE K (0s, TE < (On., 7
| COYEw ) HRYEwp) L. DlptedYEw o)

com K := max (Ko, [\/ns — 1]) e
Ko = Fn(e(R_m - 1} . (11)

Aplicando a decomposi¢do em valores singulares na matriz M, obtemos M = USV™*, onde U
e V* sao matrizes unitarias e S é uma matriz diagonal com entradas nao negativas. Uma vez
que K > ng, podemos escrever a multiplicagdo SV* como S;Vy*, onde S; é uma matriz diagonal
quadrada formada com os valores positivos de S e Vi* é uma matriz formada pelas ng primeiras
linhas de V*.

Por simples multiplicagdo matricial [4], a equagao (5) pode ser reescrita como

(VP FO)TeSVP = b, (12)

onde ¢®VP := (5)TUTcP. Com o valor de ¢°V'P, que agora obtemos evitando o mau condiciona-
mento presente em M, e construindo a matriz F®) como fizemos em F(¢), mas com os n. pontos
de avaliagao, obtemos os valores de u nos pontos de avaliagao por

ul®) = (VrFENTSVD, (13)
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2.2 QR-MFS

Para a norma euclidiana foi provado em [4] que quando realizamos a factorizagdo QR reduzida
na matriz A = QR o nimero de condi¢ao de A é igual ao numero de condicdo de R. Portanto,
resolver a equagao da forma

RcP = Q™b, (14)
nao evita o mau condicionamento. Uma forma de contornar o mau condicionamento é construir
uma matriz M = % e aplicar a factorizagao QR reduzida & matriz M, obtendo

@R
_ | R (15)
QER

onde Q(©) e QF) tém, respectivamente, as mesmas dimensdes de A(©) e AF). Assim, com a
equagdo (5) obtemos

Qe = b, (16)
onde c@F = RcP. Dessa forma, a solucdo numérica dos pontos de avaliacdo sera dada por
u®) = QB @R, (17)

2.3 Hybrid—MFS
O método Hybrid-MFS é originado da combinagao dos métodos MFS-SVD e QR-MFS; isto é,

precisamos tratar o mau condicionamento presente em F(C) ¢ para isso, vamos construir a matriz
P tal que
(F)T
p— [(F(E))T , (18)
e usando a fatoracao QR reduzida podemos escrever
RTQ©)
T
PT = [RT ol (19)

Agora, a matriz (A(C))T pode ser aproximada por MRTQ(®). Definindo M := MR” e apli-
cando sobre M o método SVD-MFS podemos reescrever a equagao (5) como

(V9T =b, (20)

onde ¢ := (§))TUTcP. Calculada ¢! obtemos a solugdo numérica para os pontos de avaliagio
por

u® = (77 Q)T (21)

3 Modificando a Fatorizacao QR

Ao aplicar a fatorizacio QR reduzida na matriz M, a matriz Q(©) resultante néo é unitéria.
Conjeturamos que Q(©) é bem condicionada, mas permanece um problema em aberto a sua prova
tedrica.

Para contornar essa limitagao, podemos encontrar matrizes Qg

tal que
QN _ | @
{ Q) } e

aplicando o algoritmo de Gram-Schmidt modificado as primeiras n. linhas.

QP e Ry com QI unitéria

R17 (22)

DOI: 10.5540/03.2026.012.01.0346 010346-4 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0346

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

3.1 QRGS-MFS e HybridGS-MFS

A partir da nova fatorizagao, adaptamos os métodos QR-MFS e Hybrid-MFS. No QRGS-MFS,
a equagao (16) é reescrita como

Qe = b, (23)

onde c@FES = Ry RcP. Os pontos de avaliacio sdo aproximados por
ul® = QgE)cQRGS. (24)

No HybridGS-MFS, utilizamos a nova fatoracdo para a matriz F', permitindo reescrever a
equagao (20) como

(‘N/l*QgC))TCHGS — b, (25)

sendo os pontos de avaliacao aproximados por

ul® = (7 Qy")e! s (26)

4 Resultados Numeéricos

Apresentamos os resultados numéricos para um dominio cuja fronteira é parametrizada pela
equagao (7), na qual a fungao radial é dada por

r(0,¢) =0.8 <cos(3¢) +4/7 — sin2(3¢>)>é . (27)

Neste exemplo, consideramos n, =~ 3n.. Os pontos fonte foram localizados sobre uma esfera de
raio R = 3 e a funcdo de contorno é dada por g(z,y, z) = 2%y*2%.

Para estimar o erro, consideramos a norma discreta £ em 92 em aproximadamente 10.000
pontos de contorno e definimos eq = |ju — u(®)|| ¢ (2Q), que representa o erro absoluto méaximo
entre a solucdo analitica u e a solucdo numérica u(F). Além disso, o namero de condicao da matriz

do sistema, denotado por ks(+), é dado pela razao

o) = Tmaxl) (28)

Umin(')

onde Opmax € omin representam, respectivamente, os maiores e menores valores singulares.

Os resultados numéricos foram obtidos com o Matlab 2024 em um notebook com processador
11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, 20 GB de RAM, rodando Windows 11.

Observamos na Figura 1 que o método Direct—MF'S sofre uma quebra devido ao mau condicio-
namento, aproximadamente para ns = 1000. Por outro lado, os métodos QR—-MFS e QRGS-MF'S,
apesar de serem bem condicionados, apresentam uma quebra, mas ainda fornecem resultados su-
periores ao Direct—MFS. Ja os métodos SVD-MFS, Hybrid-MFS e HybridGS-MFS continuam
a se aproximar da solucao com o aumento de n,. O método SVD-MFS é eficaz na reducao do
mau condicionamento e continua a se aproximar da solugao, ao contrario dos métodos QR-MFS e
QRGS-MFS, que possuem nimeros de condigao baixos, mas apresentam falhas na aproximagao.
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Figura 1: O grafico a esquerda mostra o erro de aproximagao entre os métodos Direct—-MFS, QR-MFS,
Hybrid-MFS, SVD-MFS, QRGS-MFS e HybridGS-MFS a medida que o pardmetro ns aumenta. O
grafico & direita apresenta o numero de condi¢do das matrizes envolvidas em cada um dos métodos.

Fonte: autoria propria.

5 Consideracoes Finais

Apresentamos abordagens para reduzir o mau condicionamento do método Direct—MFS. Os
métodos QRGS-MFS e HybridGS—-MFS séo os mais caros em termos de computagdo, pois pre-
cisam realizar duas e trés fatorizagGes, respectivamente. A vantagem do QRGS-MFS é que seu
nimero de condi¢ao é sempre igual a 1, mas essa condi¢ao nao melhora a sua aproximagao quando
comparado com o QR-MFS. Esperamos que, em trabalhos futuros, abordagens similares possam
ser consideradas para outros tipos de PDEs. Essas abordagens abrem novas possibilidades quanto
a escolha da localizacao dos pontos fonte sem o efeito do mau condicionamento.

6 Anexol

O codigo em MATLAB para implementar a fatorizacdo modificada de Gram-Schmidt em uma
matriz @), considerando apenas as primeiras n_c linhas, é apresentado a seguir

function [Q1, R1] = modGS(n_c, Q)
n = size(Q, 1); % Nimero de linhas de Q
p = size(Q, 2); % Namero de colunas de Q
m=mn_.c; % Namero de linhas a serem processadas
Q1 = zeros(n, p); % Inicializa Q1
R1 = zeros(p, p); % Inicializa R1

for k = 1:p
Q1(:, k)

Q(C:, k); 7% Copia a k-ésima coluna de Q para Q1
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for i = 1:k-1

R1(i, k) = Q1(1:m, 1)? * Q1(1:m, k); % Produto interno

Q1(:, k) = Q1(:, k) - R1(i, k) * Q1(:, i); ' Ortogonalizag&o
end

R1(k, k) = norm(Q1(1:m, k)); 7% Norma da coluna k
Q1(:, k) = Q1(:, k) / Ri(k, k); % Normalizag&o
end
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