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Resumo. Apresentamos neste trabalho atividades dinâmicas para contextualizar propriedades e
aplicações dos números complexos, as quais podem ser aplicadas na Licenciatura em Matemática
e adaptadas para o Ensino Médio. As atividades, desenvolvidas com o emprego de recursos com-
putacionais como o GeoGebra e o JavaScript, podem ser acessadas via links externos e exploram
problemas geométricos e trigonométricos, ampliação e rotação de imagens e fractais. Concluímos
que as atividades propostas são condizentes com o que estabelece a Base Nacional Comum Curricular
- BNCC sobre o emprego de tecnologias digitais e o desenvolvimento do pensamento computacional
nas competências específicas e habilidades para Matemática e suas Tecnologias no Ensino Médio.
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1 Introdução

A Base Nacional Comum Curricular (BNCC) [2] para Matemática e suas Tecnologias no Ensino
Médio estabelece: 1. Competência Específica 1, Habilidade EM13MAT105: “Utilizar as noções de
transformações isométricas (translação, reflexão, rotação e composições destas) e transformações
homotéticas para construir figuras e analisar elementos da natureza e diferentes produções humanas
(fractais, construções civis, obras de arte, entre outras)” ([2], p. 533); 2. Competência Específica
4, Habilidade EM13MAT405: “Utilizar conceitos iniciais de uma linguagem de programação na
implementação de algoritmos escritos em linguagem corrente e/ou matemática” ([2], p. 539).

Os Parâmetros Curriculares Nacionais (PCNs) [3] recomendam que a Matemática no Ensino
Médio não tenha apenas um caráter formativo ou instrumental, mas que também incentive os estu-
dantes a explorarem diferentes formas de visualizar determinadas situações e problemas. Embora
o ensino dos números complexos não seja contemplado diretamente na BNCC e seja considerado
facultativo nos PCNs, ele pode ser abordado através de aplicações descritas nas competências
específicas e habilidades da BNCC [18]. No entanto, essa tarefa é desafiadora, seja pela dificul-
dade de visualizar aplicações no cotidiano e relações interdisciplinares, seja pela ausência de um
significado físico evidente para esses números [6, 21]. Diante disso, apresentamos neste trabalho
atividades dinâmicas para introduzir/explorar os números complexos. As atividades, desenvolvidas
no GeoGebra [12] e em JavaScript [15], podem ser empregadas na Licenciatura em Matemática e
adaptadas para o Ensino Médio.
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2 Números Complexos: Aplicações
Historicamente, a aceitação dos números complexos pela comunidade matemática não ocorreu

de maneira simples. Muitos matemáticos resistiram à sua aceitação e tiveram dificuldades em
reconhecer sua existência [5]. Seguindo as ideias de Pólya [19], para o qual a compreensão da Ma-
temática se aprimora ao estudarmos os passos das descobertas históricas, Moreira [16] desenvolveu
materiais interativos sobre números complexos que estão disponíveis em seu blog [17]. Neste, apre-
senta a história dos números complexos ao longo das décadas e as dificuldades enfrentadas para
sua formalização como parte da Matemática.

Um desses materiais aborda o Teorema Fundamental da Álgebra (TFA), que estabelece que
toda função polinomial p : C → C, p(z) = a0+ a1z+ a2z

2+ · · ·+ anz
n, com n ≥ 1 e an ̸= 0, possui

uma raiz no corpo C dos números complexos [9]. O TFA foi inicialmente demonstrado em 1799
pelo matemático, astrônomo e físico alemão Johann Karl Friedrich Gauss (1777–1855), em sua tese
de doutoramento na Universidade de Helmstadt [13]. Moreira [16, 17] desenvolveu uma atividade
interativa no GeoGebra que permite visualizar uma prova topológica do TFA para um polinômio
de grau 4, conforme ilustra a Figura 1.

A atividade está disponível em https://www.geogebra.org/m/cwyk6r2T. Na página do Geo-
Gebra, o controle deslizante r permite selecionar o raio do disco complexo. Ao clicarmos em “Ver
as raízes (solução)”, a imagem à esquerda ilustra as raízes, destacando aquela localizada sobre a
fronteira do disco. Na imagem à direita, observamos o retrato da órbita dessa raiz [1], cujo passo
a passo da construção pode ser encontrado em https://complexos.blog.br/870/.

Figura 1: Raízes de um polinômio de grau 4. Fonte: Moreira [17].

Além do TFA, Moreira [16, 17] também aborda aplicações dos números complexos, como a
rotação e o problema dos três quadrados, além de suas relações com fractais. Apresentamos essas
aplicações considerando o conjunto dos números complexos C com suas operações e proprieda-
des [4], onde z ∈ C, z = a+ bi, sendo i =

√
−1 a unidade imaginária e a, b ∈ R, com b > 0.

2.1 Rotação: Multiplicando z ∈ C por i

Ao multiplicarmos um número complexo z = x+ yi pela unidade imaginária i, o produto será
o número complexo z · i = −y + xi. Os vetores que representam z e z · i são perpendiculares,
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Figura 2(a), pois |−→zi|2 + |−→z |2 = |−−−→z − zi|2 (Teorema de Pitágoras [20]), ou ainda, < x, y ><
−y, x >= −xy + yx = 0 (produto interno igual a zero). Na Figura 2(b), observamos a posição
dos vértices de um polígono quando as coordenadas complexas dos vértices são multiplicados por
i. Moreira [16, 17] organizou uma atividade interativa no GeoGebra, que está disponível em
https://www.geogebra.org/m/SbdDT3bg, sobre a multiplicação por i e a rotação de polígonos.

(a) (b)

Figura 2: Multiplicação z · i: (a) perpendicularidade; (b) rotação de polígonos. Fonte: Moreira [16].

A multiplicação por i também possibilita a rotação de imagens. A Figura 3(a) ilustra uma
imagem multiplicada por

√
2 duas vezes; a Figura 3(b) ilustra a mesma imagem multiplicada por

2, o que equivale a multiplicar duas vezes por
√
2. A Figura 3(c) mostra o que ocorre com a

imagem ao ser multiplicada por −1, enquanto que a Figura 3(d) ilustra que ocorre o mesmo ao
multiplicarmos a imagem dada duas vezes seguidas por

√
−1 = i, ou seja, há uma rotação de 90◦

da imagem em cada etapa.

(a) (b)

(c) (d)

Figura 3: Ampliação (a)-(b) e rotação (c)-(d) de imagens. Fonte: Moreira [17].

Moreira [17] estruturou uma ativade dinâmica sobre a rotação de imagens em seu blog, dispo-
nível em https://complexos.blog.br/758/.
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2.2 O Problema dos Três Quadrados
Gardner [11] apresenta o Problema 2.1, que é costumeiramente solucionado utilizando-se rela-

ções geométricas e trigonométricas.

Problema 2.1. Colocando-se três quadrados lado a lado, e traçando linhas que unem os seus
vértices inferiores esquerdos ao vértice superior direito do quadrado à direita, qual é a soma dos
ângulos que as três linhas formam com a reta suporte das bases dos quadrados?

Sejam α, β e γ os ângulos que as três linhas formam com a reta suporte das bases dos quadrados
– Figura 4(a). Moreira [16, 17] propõe uma solução para o Problema 2.1 no plano complexo. O
objetivo é mostrar que α+β+γ = 90◦ ou, equivalentemente, que γ = α+β. Situando os quadrados
no plano complexo – Figura 4(b), a soma α+β+γ é o argumento do produto dos números complexos
z1 = 1 + i, z2 = 2 + i e z3 = 3 + i, ou seja, z = z1 · z2 · z3 = (1 + i)(2 + i)(3 + i) = 10i, sendo que
z = 10i corresponde a 10 vezes a unidade imaginária representada por 1 no eixo imaginário Im.
Logo, z = 10(cos 90o + i sen 90o), com z na forma polar ou trigonométrica. Portanto, α+ β + γ =
Arg(z) = 90o.

(a)

(b)

Figura 4: Três quadrados: (a) lado a lado; (b) no plano complexo. Fonte: Moreira [17].

Moreira [16, 17] desenvolveu uma atividade dinâmica sobre o problema dos três quadrados no
GeoGebra, disponível em https://www.geogebra.org/m/Efhnpubb.

3 Fractais: Conjunto de Julia
Um fractal é uma forma geométrica áspera, rugosa e fragmentada que pode ser dividida em

partes menores e estas reproduzem o todo em uma escala reduzida [14]. O termo fractal foi
cunhado por Benoit B. Mandelbrot (1924–2010), a partir do adjetivo latino fractus, cujo verbo
correspondente frangere significa quebrar, criar fragmentos irregulares. A Figura 5 ilustra alguns
modelos de fractais.
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Figura 5: Fractais: (a) curva de Hilbert; (b) curva de Koch; (c) samambaia de Barnsley; (d) triângulo de
Sierpinski; (e) Hexágono de Sierpinski. Fonte: Moreira [16].

O Conjunto de Julia Preenchido associado à função f(z) = z2+c, c ∈ C, é o conjunto dos valores
de z para os quais a iteração z → z2+c não diverge para o infinito. Já o Conjunto de Julia associado
à função f(z) = z2 + c é a fronteira do Conjunto de Julia Preenchido correspondente [8]. Para
quase todos os valores de c, o Conjunto de Julia obtido é um fractal [10]. Com o desenvolvimento
da computação, pode-se calcular mais pontos e melhorar a visualização desses conjuntos. A Figura
6(a) ilustra a primeira imagem conhecida de um Conjunto de Julia; na Figura 6(b), Moreira [16,
17] reproduziu em JavaScript o Conjunto de Julia e o Conjunto de Julia Preenchido associados à
função f(z) = z2 − 1, onde c = −1 + 0i.

(a) (b)

Figura 6: (a) Primeira imagem conhecida de um conjunto de Julia; (b) Conjunto de Julia e Conjunto de
Julia Preenchido da função f(z) = z2 − 1. Fonte: (a) Cremer [7]; (b) Moreira [16].

As imagens dos fractais dos Conjuntos de Julia Preenchidos são obtidas quando, com o auxílio de
computadores, testa-se uma quantidade muito grande de condições iniciais z0 para um determinado
c. Quando uma condição z0 não diverge, marca-se esse ponto no plano complexo e repete-se o teste
para outro número na vizinhança. Em Moreira [16] há uma descrição do passo a passo para gerar
um Conjunto de Julia Preenchido. A Figura 7 mostra alguns Conjuntos de Julia Preenchidos
associados à f(z) 7→ z2 + c obtidos a partir desse procedimento.

Moreira [17] organizou uma atividade que possibilita a visualização dos Conjuntos de Julia a
partir do Conjunto de Mandelbrot4. Essa atividade, desenvolvida em JavaScript, está disponível
em https://complexos.blog.br/fractals/julia/julia.html.

4O Conjunto de Mandelbrot é o conjunto de todos os números complexos c para os quais a iteração z → z2 + c,
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Figura 7: Conjuntos de Julia Preenchidos para: (a) c = −0, 65 + 0, 4i; (b) c = −0, 1 − 0, 9i; (c) c =

−1, 3 + 0, 05i; (d) c = 0, 2 + 0, 55i; (e) c = −0, 6 + 0, 2i; (f) c = −1, 0 + 0i; (g) c = −1, 01 + 0, 28i; (h)
c = 0, 16 + 0, 66i. Fonte: Moreira [16].

4 Considerações Finais
Os números complexos desempenham um papel fundamental na solução de diversos proble-

mas geométricos, permitindo soluções mais elegantes e concisas. A aplicabilidade desses números
vai além da abstração algébrica, oferecendo uma perspectiva visual e interativa que aprimora a
compreensão dos conceitos matemáticos. Desta forma, apresentamos neste trabalho atividades
dinâmicas, elaboradas no GeoGebra e em JavaScript, para investigar propriedades e aplicações dos
números complexos.

Uma das aplicações exploradas é a geração de fractais, uma vez que a riqueza visual das
imagens fractais se destaca como recurso motivador no ensino dos números complexos e no estudo
de sequências de funções. Além dos fractais, também abordamos o Teorema Fundamental da
Álgera, a rotação de imagens e o problema dos três quadrados. Moreira [16] descreve outras
aplicações interessantes em Física, tais como oscilações e ondas, impedância complexa em circuitos
RLC e o processamento digital de sinais.

Apesar da BNCC não incluir explicitamente o conjunto dos números complexos nas habilidades
para Matemática e suas Tecnologias no Ensino Médio, é importante destacar que o professor de
Matemática na Educação Básica precisa apresentar esse conjunto ao abordar a solução de equações
quadráticas com discriminante negativo.

Por fim, esperamos que este trabalho contribua à contextualização no ensino dos números
complexos, seja na Licenciatura em Matemática, seja em adaptações propostas à Educação Básica.
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