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Resumo. Apresentamos neste trabalho atividades dinamicas para contextualizar propriedades e
aplicagoes dos nimeros complexos, as quais podem ser aplicadas na Licenciatura em Matematica
e adaptadas para o Ensino Médio. As atividades, desenvolvidas com o emprego de recursos com-
putacionais como o GeoGebra e o JavaScript, podem ser acessadas via links externos e exploram
problemas geomeétricos e trigonométricos, ampliagdo e rotagdo de imagens e fractais. Concluimos
que as atividades propostas sdo condizentes com o que estabelece a Base Nacional Comum Curricular
- BNCC sobre o emprego de tecnologias digitais e o desenvolvimento do pensamento computacional
nas competéncias especificas e habilidades para Matematica e suas Tecnologias no Ensino Médio.
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1 Introducao

A Base Nacional Comum Curricular (BNCC) [2] para Matematica e suas Tecnologias no Ensino
Meédio estabelece: 1. Competéncia Especifica 1, Habilidade EM13MAT105: “Utilizar as nogoes de
transformagoes isométricas (translacao, reflexao, rotagdo e composicoes destas) e transformagoes
homotéticas para construir figuras e analisar elementos da natureza e diferentes produgoes humanas
(fractais, construgdes civis, obras de arte, entre outras)” ([2], p. 533); 2. Competéncia Especifica
4, Habilidade EM13MAT405: “Utilizar conceitos iniciais de uma linguagem de programacao na
implementacao de algoritmos escritos em linguagem corrente e/ou matemaéatica” ([2], p. 539).

Os Parametros Curriculares Nacionais (PCNs) [3] recomendam que a Matemaética no Ensino
Médio nao tenha apenas um carater formativo ou instrumental, mas que também incentive os estu-
dantes a explorarem diferentes formas de visualizar determinadas situacées e problemas. Embora
o ensino dos numeros complexos nao seja contemplado diretamente na BNCC e seja considerado
facultativo nos PCNs, ele pode ser abordado através de aplicagbes descritas nas competéncias
especificas e habilidades da BNCC [18]. No entanto, essa tarefa é desafiadora, seja pela dificul-
dade de visualizar aplicagoes no cotidiano e relacoes interdisciplinares, seja pela auséncia de um
significado fisico evidente para esses ntmeros [6, 21]. Diante disso, apresentamos neste trabalho
atividades dinAmicas para introduzir/explorar os nimeros complexos. As atividades, desenvolvidas
no GeoGebra [12] e em JavaScript [15], podem ser empregadas na Licenciatura em Matemaética e
adaptadas para o Ensino Médio.
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2 Numeros Complexos: Aplicagoes

Historicamente, a aceitagao dos niimeros complexos pela comunidade matemaética nao ocorreu
de maneira simples. Muitos matematicos resistiram & sua aceitagao e tiveram dificuldades em
reconhecer sua existéncia [5]. Seguindo as ideias de Polya [19], para o qual a compreensao da Ma-
tematica se aprimora ao estudarmos os passos das descobertas historicas, Moreira [16] desenvolveu
materiais interativos sobre niimeros complexos que estao disponiveis em seu blog [17]. Neste, apre-
senta a historia dos niimeros complexos ao longo das décadas e as dificuldades enfrentadas para
sua formalizacao como parte da Matematica.

Um desses materiais aborda o Teorema Fundamental da Algebra (TFA), que estabelece que
toda funcio polinomial p: C — C,p(z) = ap + a1z +a2z?+---+a,2", comn > 1 e a, # 0, possui
uma raiz no corpo C dos nameros complexos [9]. O TFA foi inicialmente demonstrado em 1799
pelo matematico, astronomo e fisico alemao Johann Karl Friedrich Gauss (1777-1855), em sua tese
de doutoramento na Universidade de Helmstadt [13]. Moreira [16, 17] desenvolveu uma atividade
interativa no GeoGebra que permite visualizar uma prova topologica do TFA para um polinémio
de grau 4, conforme ilustra a Figura 1.

A atividade esta disponivel em https://www.geogebra.org/m/cwyk6r2T. Na pagina do Geo-
Gebra, o controle deslizante r permite selecionar o raio do disco complexo. Ao clicarmos em “Ver
as raizes (solugdo)”, a imagem a esquerda ilustra as raizes, destacando aquela localizada sobre a
fronteira do disco. Na imagem & direita, observamos o retrato da orbita dessa raiz [1], cujo passo
a passo da construgao pode ser encontrado em https://complexos.blog.br/870/.

Pz) = agzt + agz® + as2? +1ajz +apiag# 0 g

2=1 a.=-2 a=1

G Ver as raizes (solucdo)

Figura 1: Raizes de um polindomio de grau 4. Fonte: Moreira [17].

Além do TFA, Moreira [16, 17] também aborda aplicagbes dos niimeros complexos, como a
rotagao e o problema dos trés quadrados, além de suas relagées com fractais. Apresentamos essas
aplicacoes considerando o conjunto dos nimeros complexos C com suas operagoes e proprieda-
des [4], onde z € C,z = a + bi, sendo i = v/—1 a unidade imaginaria e a,b € R, com b > 0.

2.1 Rotacao: Multiplicando z € C por ¢

Ao multiplicarmos um ntimero complexo z = x + yi pela unidade imaginaria 7, o produto seré
o numero complexo z -7 = —y + xi. Os vetores que representam z e z - ¢ sao perpendiculares,
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% —)
Figura 2(a), pois |zi|? + | 7|2 = |z — 2i|> (Teorema de Pitagoras [20]), ou ainda, < z,y ><
—y,x >= —xy + yx = 0 (produto interno igual a zero). Na Figura 2(b), observamos a posi¢ao

dos vértices de um poligono quando as coordenadas complexas dos vértices sao multiplicados por
i. Moreira [16, 17] organizou uma atividade interativa no GeoGebra, que esta disponivel em
https://www.geogebra.org/m/SbdDT3bg, sobre a multiplicacao por i e a rotacao de poligonos.
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Figura 2: Multiplicagéo z - i: (a) perpendicularidade; (b) rotagdo de poligonos. Fonte: Moreira [16].

A multiplicagdo por i também possibilita a rotacdo de imagens. A Figura 3(a) ilustra uma
imagem multiplicada por v/2 duas vezes; a Figura 3(b) ilustra a mesma imagem multiplicada por
2, 0 que equivale a multiplicar duas vezes por v/2. A Figura 3(c) mostra o que ocorre com a
imagem ao ser multiplicada por —1, enquanto que a Figura 3(d) ilustra que ocorre o mesmo ao
multiplicarmos a imagem dada duas vezes seguidas por v/—1 = 4, ou seja, h4 uma rotacdo de 90°
da imagem em cada etapa.

Figura 3: Ampliagdo (a)-(b) e rotagdo (c)-(d) de imagens. Fonte: Moreira [17].

Moreira [17] estruturou uma ativade dinAmica sobre a rotagao de imagens em seu blog, dispo-
nivel em https://complexos.blog.br/758/.
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2.2 O Problema dos Trés Quadrados

Gardner [11] apresenta o Problema 2.1, que é costumeiramente solucionado utilizando-se rela-
coes geométricas e trigonométricas.

Problema 2.1. Colocando-se trés quadrados lado a lado, e tragando linhas que unem os seus
vértices inferiores esquerdos ao vértice superior direito do quadrado a direita, qual € a soma dos
dngulos que as trés linhas formam com a reta suporte das bases dos quadrados?

Sejam a, 3 e vy os angulos que as trés linhas formam com a reta suporte das bases dos quadrados
— Figura 4(a). Moreira [16, 17] propoe uma solu¢do para o Problema 2.1 no plano complexo. O
objetivo é mostrar que a+ S+ = 90° ou, equivalentemente, que v = o+ 3. Situando os quadrados
no plano complexo — Figura 4(b), a soma a+ 5+ é o argumento do produto dos nameros complexos
z1=1+1i,20=2+1iez23=3+1, ouseja, z =222 23 =(1+4)(2+14)(3+ i) = 104, sendo que
z = 10i corresponde a 10 vezes a unidade imaginaria representada por 1 no eixo imaginario I'm.
Logo, z = 10(cos 90° 4 i sen 90°), com z na forma polar ou trigonométrica. Portanto, o+ 8+ v =
Arg(z) = 90°.
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Figura 4: Trés quadrados: (a) lado a lado; (b) no plano complexo. Fonte: Moreira [17].

Moreira [16, 17] desenvolveu uma atividade dindmica sobre o problema dos trés quadrados no
GeoGebra, disponivel em https://www.geogebra.org/m/Efhnpubb.

3 Fractais: Conjunto de Julia

Um fractal é uma forma geométrica aspera, rugosa e fragmentada que pode ser dividida em
partes menores e estas reproduzem o todo em uma escala reduzida [14]. O termo fractal foi
cunhado por Benoit B. Mandelbrot (1924-2010), a partir do adjetivo latino fractus, cujo verbo
correspondente frangere significa quebrar, criar fragmentos irregulares. A Figura 5 ilustra alguns
modelos de fractais.
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Figura 5: Fractais: (a) curva de Hilbert; (b) curva de Koch; (¢) samambaia de Barnsley; (d) triangulo de
Sierpinski; (e) Hexagono de Sierpinski. Fonte: Moreira [16].

O Conjunto de Julia Preenchido associado a funcao f(z) = 22+-c, ¢ € C, é o conjunto dos valores
de z para os quais a iteracdo z — z2+4c nao diverge para o infinito. Ja o Conjunto de Julia associado
a fungdo f(2) = 22 + ¢ é a fronteira do Conjunto de Julia Preenchido correspondente [§]. Para
quase todos os valores de ¢, o Conjunto de Julia obtido é um fractal [10]. Com o desenvolvimento
da computacao, pode-se calcular mais pontos e melhorar a visualizagao desses conjuntos. A Figura
6(a) ilustra a primeira imagem conhecida de um Conjunto de Julia; na Figura 6(b), Moreira [16,
17] reproduziu em JavaScript o Conjunto de Julia e o Conjunto de Julia Preenchido associados a
funcio f(z) = 2% — 1, onde ¢ = —1 + 0i.

A, B A

As Az

(a) (b)
Figura 6: (a) Primeira imagem conhecida de um conjunto de Julia; (b) Conjunto de Julia e Conjunto de
Julia Preenchido da funcio f(z) = 2% — 1. Fonte: (a) Cremer [7]; (b) Moreira [16].

As imagens dos fractais dos Conjuntos de Julia Preenchidos sao obtidas quando, com o auxilio de
computadores, testa-se uma quantidade muito grande de condigoes iniciais zy para um determinado
c. Quando uma condigao zg nao diverge, marca-se esse ponto no plano complexo e repete-se o teste
para outro nimero na vizinhan¢a. Em Moreira [16] ha uma descrigado do passo a passo para gerar
um Conjunto de Julia Preenchido. A Figura 7 mostra alguns Conjuntos de Julia Preenchidos
associados & f(z) — 22 + c obtidos a partir desse procedimento.

Moreira [17] organizou uma atividade que possibilita a visualizagdo dos Conjuntos de Julia a
partir do Conjunto de Mandelbrot*. Essa atividade, desenvolvida em JavaScript, esta disponivel
em https://complexos.blog.br/fractals/julia/julia.html.

40 Conjunto de Mandelbrot é o conjunto de todos os niimeros complexos ¢ para os quais a iteracio z — 22 + ¢,
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Figura 7: Conjuntos de Julia Preenchidos para: (a) ¢ = —0,65 + 0,44; (b) ¢ = —0,1 — 0,94; (c) ¢ =
—1,3+40,054; (d) ¢ = 0,24 0,554; (e) ¢ = —0,6 +0,2i; (f) ¢ = —1,0 4 0i; (g) ¢ = —1,01 + 0,28i; (h)
¢=0,16 4+ 0,66¢. Fonte: Moreira [16].

4 Consideracoes Finais

Os nimeros complexos desempenham um papel fundamental na solugao de diversos proble-
mas geométricos, permitindo solu¢ées mais elegantes e concisas. A aplicabilidade desses ntimeros
vai além da abstracao algébrica, oferecendo uma perspectiva visual e interativa que aprimora a
compreensao dos conceitos matematicos. Desta forma, apresentamos neste trabalho atividades
dindmicas, elaboradas no GeoGebra e em JavaScript, para investigar propriedades e aplicagdes dos
nimeros complexos.

Uma das aplicagbes exploradas é a geracao de fractais, uma vez que a riqueza visual das
imagens fractais se destaca como recurso motivador no ensino dos ntimeros complexos e no estudo
de sequéncias de fungoes. Além dos fractais, também abordamos o Teorema Fundamental da
Algera, a rotacio de imagens e o problema dos trés quadrados. Moreira [16] descreve outras
aplicagoes interessantes em Fisica, tais como oscilagoes e ondas, impedancia complexa em circuitos
RLC e o processamento digital de sinais.

Apesar da BNCC nao incluir explicitamente o conjunto dos nimeros complexos nas habilidades
para Matematica e suas Tecnologias no Ensino Médio, é importante destacar que o professor de
Matematica na Educacao Bésica precisa apresentar esse conjunto ao abordar a solucao de equacoes
quadréticas com discriminante negativo.

Por fim, esperamos que este trabalho contribua & contextualizagdo no ensino dos nimeros
complexos, seja na Licenciatura em Matemaética, seja em adaptacoes propostas a Educagao Bésica.
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