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Resumo. Apresentamos neste trabalho atividades para investigar dinamicamente os teoremas de
Pitagoras e de Napoledo e o ponto de Fermat. As atividades foram construidas em péaginas da
plataforma GeoGebra, as quais podem ser acessadas por links externos e utilizadas pelo professor
de matematica da Educacao Basica e do Ensino Superior. Concluimos que o emprego do GeoGebra
dinamiza demonstragoes geométricas e que as atividades propostas estao em consonéncia com o
que estabelece a Base Nacional Comum Curricular sobre o uso de tecnologias digitais no ensino de
matematica.
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1 Introducao

Em matematica, “uma demonstragao é uma entidade objetivamente existente no espago logico
[...] é algo capaz de induzir a uma vivéncia subjetiva indutora de convicgdo em um agente ma-
tematico real” ([16], p. 69). Com o advento do computador e o emprego deste para auxiliar no
desenvolvimento de demonstragoes, surgem os ambientes de geometria dindmica, dentre os quais
destacamos o GeoGebra [4]. Como a leitura de uma demonstragao “exige que se desloque, frequen-
temente, o olhar para as representagoes visual, linguistica e simbolica” ([9], p. 12), as tecnologias
digitais permitem “tornar manipulaveis as representagoes semioticas como se fossem objetos con-
cretos” ([9], p- 5). Logo, “entende-se que as demonstragoes feitas em ambientes estaticos (papel
ou quadro) podem dificultar a percepgdo das varia¢oes dos registros, porque tais ambientes néo
permitem variagoes concomitantes” ([9], p. 14).

Quanto a demonstracdo em matematica, a Base Nacional Comum Curricular - BNCC [2] destaca
que: “Apesar de a Matematica ser, por exceléncia, uma ciéncia hipotético—dedutiva, porque suas
demonstracoes se apoiam sobre um sistema de axiomas e postulados, é de fundamental importancia
também considerar o papel heuristico das experimentagoes na aprendizagem da Matematica” ([2],
p. 265). Ainda, a quinta competéncia especifica de Matemaética e suas Tecnologias para o Ensino
Médio da BNCC associa o emprego de tecnologias & demonstragdo em matematica: “Investigar e
estabelecer conjecturas a respeito de diferentes conceitos e propriedades matematicas, empregando
estratégias e recursos, como observacao de padroes, experimentagoes e diferentes tecnologias, iden-
tificando a necessidade, ou nao, de uma demonstragao cada vez mais formal na validagao das
referidas conjecturas” ([2], p. 531).
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Desta forma, e devido também as nossas experiéncias com o GeoGebra [5, 11-15, 18, 19|,
apresentamos neste trabalho atividades dindmicas para comprovar trés teoremas geométricos clas-
sicos [17]: o teorema de Pitagoras, o teorema de Napoledo e o ponto de Fermat. As experiéncias
din&micas, elaboradas de modo a fornecer recursos didaticos para auxiliar o professor de mateméa-
tica na abordagem desses teoremas, foram construidas em paginas do GeoGebra que podem ser
acessadas por links externos, apresentados no texto, e manipuladas via App.

2 O Teorema de Pitagoras

Para o Teorema 2.1, Loomis [7]| organizou 256 demonstragoes geométricas. Estas foram dividi-
das em dez grupos, cada um deles com um método de demonstracao. As demonstragdes geométricas
de ntmeros 9 a 32 consistem na divisao dos quadrados construidos sobre os lados de um tridngulo
retangulo em partes congruentes. Nesse grupo, selecionamos a demonstragao 9, que corresponde &
equicomposi¢do de Henry Perigal (1801-1898) [10], ilustrada na Figura 1.
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Figura 1: Demonstra¢ao geométrica namero 9 de Loomis: a equicomposi¢ao de Perigal. Fonte: Silva [17].

Teorema 2.1 (de Pitagoras). Se ABC é um tridngulo retdngulo em C, entdo o quadrado da
medida da hipotenua AB € igual ¢ soma dos quadrados das medidas dos catetos AC e BC.

Demonstrag¢ao. Sejam: o triangulo ABC, retangulo em C e de lados AB = ¢, BC =ae AC =1
os quadrados ACFG, CBDE e ABIH construidos, respectivamente, sobre os lados AC, BC e
AB do triangulo ABC); os pontos J, K, L e M, pontos médios dos lados AB, HA, IH e BI,
respectivamente, do quadrado ABIH; os pontos P, ), R e S interiores ao quadrado ABIH, com
JP|RL| AC e SM | KQ | BC,onde S€ JP,Q € RL, Re SM e P € KQ; o ponto O, centro
do quadrado CBDE; os pontos T', U, V e W pertencentes, respectivamente, aos lados CB, EC,
DE e BD do quadrado CBDE, tais que UW || AB e VT L UW - Figura 1.

Desta forma, temos que o quadrado PQRS é congruente ao quadrado ACFG, VT || BI,
VO =0T =BM e AU = BW = JP =S5M = RL = KQ = DV = EU = CT. Ainda, como
UW || ABe AJ = JB =UO = OW = AK, os quadrilateros HLQK, IMRL, BJSM, AKPJ,
UCTO, TBWO, WDVO e VEUO sao congruentes. Logo, temos que:

A(ABIH) =A(PQRS) + AA(AKPJ);
A(ABIH) =A(ACFG) + 4A(V EUO);
A(ABHI) =A(ACFG) + A(CBDE). (1)
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Como os lados dos quadrados ABHI, ACFG e CBDE medem, respectivamente, ¢, b e a,
concluimos de (1) que ¢? = a? + b?. O

A demonstracdo da equicomposicao de Perigal pode ser efetuada com mais detalhes, como
em Fernandes [3]. Construimos no GeoGebra uma atividade dinamica para a equicomposi¢ao de
Perigal, disponivel em https://www.geogebra.org/m/vzjfwbvk. No GeoGebra App, os vértices
A, B e C podem ser movimentados dinamicamente para explorar diferentes configuragées do
tridngulo retangulo e verificar a equivaléncia de areas dos quadrilateros da equicomposigao.

3 O Teorema de Napoleao

O Teorema 3.1 é atribuido a Napoledo Bonaparte (1769-1821), politico, militar e imperador
francés. Esse teorema estabelece que os centros dos tridngulos equilateros construidos sobre os
lados de um tridngulo sao os vértices de um tridngulo equildtero. Uma propriedade adicional dos
tridngulos equilateros construidos sobre os lados do tridngulo inicial, também atribuida a Napoleao,
é que as circunferéncias circunscritas concorrem no primeiro ponto de Fermat [20]. O teorema de
Napoledo é um caso especial do teorema de Petr-Neumann-Douglas [6].

Teorema 3.1 (de Napoledo). Se ACD, BCE e ABF sao tridngulos equildteros construidos sobre
0s lados de um triangulo ABC, entao o tridngulo GHI, cujos vértices sio, respectivamente, 0s
baricentros dos tridngulos equildteros, € equildtero.

Demonstrag¢ao. Sejam o tridngulo ABC, os tridngulos equilateros ABF', ACD e BCFE, construidos
sobre os lados de ABC, e os pontos GG, H e I, baricentros dos tridngulos ACD, BCE e ABF,
respectivamente - Figura 2(a).
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Figura 2: Triangulos para a prova do Teorema 3.1. Fonte: Silva [17].

Os triangulos EC A e BC'D sao congruentes pelo caso LAL (lado-angulo-lado) [8], uma vez que
EC =BC, DC = AC e ZECA = ZBCD - Figura 2(a). Logo, BD = AE. Analogamente, temos
que:

CF=BD = AFE. (2)

Empregando as propriedades do baricentro [8] nos tridngulos equilateros BCE e ACD - Figura
2(b), verificamos que ZHCB = 30° e ZACG = 30°. Logo:

/HCG =/ECA; (3)
2 V3 V3

HC =33 EC =" EC (4)

CG:§-§~AC:§-AC. (5)
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4
Das igualdades (4) e (5), obtemos que:
HC _CG_ V3 6
EC  AC 3
De (3) e (6), concluimos que os tridngulos HCG e EC A sao semelhantes (caso LAL). Portanto:
HC _CG_GH _ 3 .
EC AC AE 3~
De forma anéloga, temos nos tridngulos BAD e I AG - Figura 2(c), que ZIAB = 30° e ZCAG =
30°. Logo:
/IAG =/BAD:; (8)
2 V3 V3
AG==-—-AD=— - AD;
G=3"3 3 ; (9)
AI:g-ﬁ-BAzﬁ-BA, (10)
3 2 3
Das igualdades (9) e (10), constatamos que:
A Al
AG AL _ V3 ()
AD BA 3
De (8) e (11), concluimos que os tridngulos TAG e BAD sao semelhantes (caso LAL). Desta
maneira:
AG AL 1G V3 (12)
AD BA BD 3
Analisando os tridngulos IBH e FBC' - Figura 2(d), temos que ZABI = 30° e ZCBH = 30°.
Logo:
/IBH =/CBF; (13)
B2 V3 pp_ V3 pp (14)
3 2 3
2 V3 V3
BH =-.-—-BC=—"-BC. 15
3 2 3 (15)
Das igualdades (14) e (15), temos que:
IB BH 3
m_bn v w0
BF  BC 3
Assim, concluimos de (13) e (16) que os tridngulos IBH e FBC sao semelhantes (caso LAL).
Portanto:
1B _BH _IH_\3 -
BF  BC FC 3
Comparando as igualdades (7), (12) e (17), obtemos que:
G _GH 3 s
FC  BD AE  3°
Finalmente, de (2) e (18), concluimos que:
IH=1G=GH. (19)
A relacao (19) estabelece que os lados do tridngulos GH I sdo congruentes. Portanto, o tridngulo
GH] é equilatero. O
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Organizamos no GeoGebra uma atividade dindmica para o teorema de Napoleao, disponivel
em https://wuw.geogebra.org/m/amhb8fng. No GeoGebra App, os pontos A, B e C podem ser
movimentados dinamicamente, o que permite observar novas configuragoes do triangulo ABC e
verificar a medida dos lados do triangulo cujos extremos sao os baricentros dos tridngulos equilateros
construidos sobre os lados de ABC'.

4 O Ponto de Fermat

O primeiro ponto de Fermat (ou simplesmente ponto de Fermat ou ponto de Torricelli) é
um problema proposto por Pierre de Fermat (1601-1665) a Evangelista Torricelli (1608-1647),
matematico e fisico italiano que inventou o barémetro. Em uma carta, Fermat desafiou Torricelli
a solucionar o Problema 4.1.

Problema 4.1. Determinar o ponto tal que a soma de suas distdncias aos vértices de um tridngulo
seja minima.

Torricelli apresentou varias solugoes para o problema proposto por Fermat. Em uma dessas
solugbes, observou que as circunferéncias circunscritas aos tridngulos equilateros construidos ex-
ternamente sobre os lados do tridngulo s@o concorrentes em um ponto [1]. Esse ponto recebeu o
nome de Fermat, o proponente do problema.

Apresentamos nesta segio a demonstracao baseada no Teorema 3.1 (de Napoleao) [1].

Demonstragao. Sejam: o tridngulo ABC'; o ponto M, interno ao tridngulo ABC'; o tridngulo ABM;
o triangulo A’BM’, oriundo da rotagao de 60° do triangulo ABM em torno do vértice B - Figura
3(a).

(a) (b)

Figura 3: Triangulos para a prova do Problema 4.1. Fonte: Silva [17].

Por construgao, temos que o triAngulo BM M’ ¢é equilatero. Logo, MB = M’'B e, como
MA = M'A’, temos que:

MA+ MB + MC = A'M' + M'M + MC. (20)

O ponto A’ é obtido pela rotacdo de A em torno de B. Logo, a posi¢gdo de A’ ndo depende de
M e temos que MA+ MB + MC > A'C. Assim, a soma em (20) é minima quando M € A'C.
Para tanto, é preciso que BM A’ = 60°4.

4Se a rotacio fosse feita em torno do ponto A, deveriamos ter AMA' = 60°.
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Construindo tridngulos equilateros sobre os lados do tridngulo ABC, obtemos os triAngulos
ABA’', ACC'" e BCB', e as retas A’C, AB’ e BC' se intersectam em um ponto - Figura 3(b).

2 =
O Teorema 3.1 (de Napoledo) garante que as retas A'C', AB’ e BC' se intersectam em um ponto
e que o angulo entre elas é de 120°. Temos entdao que AB’ = BC' = A'C = MA+ MB + MC,
sendo M o ponto de Fermat. Portanto, o ponto de Fermat é tnico e se encontra na intersegao
das retas que passam pelos vértices opostos dos tridngulos equilateros construidos sobre os lados
do tridngulo ABC. No caso em que um dos dngulos do tridngulo ABC é maior do que ou igual a
120°, o ponto de Fermat seréd o vértice correspondente ao maior angulo do tridngulo. O

Construimos no GeoGebra uma atividade dindmica para o ponto de Fermat, disponivel em
https://www.geogebra.org/m/yyypd3p8. No GeoGebra App, os vértices do tridngulo ABC e o
ponto M, interior a ABC, podem ser movidos dinamicamente para investigar novas configuragoes
do tridngulo e verificar a distancia minima quando M coincide com o ponto de Fermat.

5 Consideracoes Finais

Propomos neste trabalho atividades dinamicas, construidas em paginas da plataforma GeoGe-
bra e acessadas via links externos, para comprovar trés teoremas geométricos cléssicos: o teorema
de Pitagoras, o teorema de Napoleao e o ponto de Fermat. Na composicao das atividades, apresen-
tamos inicialmente a demonstragao formal dos teoremas para depois conduzir o(a) leitor(a) para
uma experimentagdo dindmica no GeoGebra. Essa dindmica segue o método de apresentacao de
Alexander Bogomolny (1948-2018), matematico estadunidense nascido na Rissia, cujos trabalhos
estao disponiveis na internet, como, por exemplo, em Bogomolny [1]. As experiéncias dindmicas
compoem atividades que podem ser aplicadas na Educagao Béasica, na Licenciatura em Mateméa-
tica e no Mestrado Profissional em Matematica em Rede Nacional - PROFMAT. Almejamos que
as mesmas sirvam de inspiracdo aos(as) professores(as) de matematica da Educacdo Béasica e do
Ensino Superior no tocante ao emprego de tecnologias digitais como o GeoGebra nas aulas de
geometria.

Agradecimentos

A autora Victoria Mazotti Rodrigues da Silva agradece & UTFPR Campus Curitiba pela con-
cessao de uma bolsa de estudos durante doze meses, periodo em que este trabalho foi parcialmente
desenvolvido.

Referéncias

[1] A.Bogomolny. The Fermat point and generalizations. Online. Acessado em 08/02/2025,
http://www.cut-the-knot.org/Generalization/fermat_point.shtml.

[2] Brasil. Base Nacional Comum Curricular. Online. Acessado em 12/02/2025, https:
//www . gov .br/mec/pt-br/escola-em-tempo- integral /BNCC\ _EI\ _EF\ _110518\
_versaofinal.pdf.

[3] F.M. Fernandes. “Poligonos e poliedros equidecomponiveis”. Dissertacao de mestrado. UTFPR
Curitiba, 2018.

[4] GeoGebra. Ferramentas e recursos do GeoGebra. Ounline. Acessado em 08/02/2025,
https://www.geogebra.org/.

DOI: 10.5540/03.2026.012.01.0257 010257-6 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0257

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

[5] R. C Lago e R. L. Nés. “Investigando teoremas de geometria plana com o GeoGebra”. Em:
Revista do Instituto GeoGebra Internacional de Sao Paulo 9(3) (2020), pp. 15-29.
DOI: 10.23925/2237-9657.2020.v9i3p015-029.

[6] F. Lamoen e E. W Weisstein. Petr-Neumann-Douglas theorem. Online. Acessado em
12/02/2025, https://mathworld.wolfram.com/Petr-Neumann-DouglasTheorem.html.

[7] E. S. Loomis. The pythagorean proposition. Washington: National Council of Teachers
of Mathematics, 1968. 1SBN: 978-0873530361.

[8] A.C.M. Neto. Geometria. la. ed. Rio de Janeiro: SBM, 2013. 1SBN: 978-85-85818-93-7.

[9] J. C. C. Nobriga. “Demonstragoes matematicas dinamicas”. Em: REVEMAT 15(1) (2019),
pp- 1-21. DOI: 10.5007/1981-1322.2019.e61725.

[10] R. L. Nos e F. M. Fernandes. “Ensinando areas e volumes por equicomposi¢do”. Em: Edu-
cacao Matematica em Revista 24(63) (2019), pp. 121-137.

[11] R. L. N6s e R. C. Lago. “Investigando dinamicamente teoremas de geometria plana”. Em:
Proceeding Series of the Brazilian Society of Computational and Applied Mathe-
matics. 2019, pp. 010395-1-7. DOL: 10.5540/03.2020.007.01.0395.

[12] R. L. No6s, M. Sano e V. M. R. da Silva. “A dynamic view of some geometric loci via GeoGe-
bra”. Em: Revista Sergipana de Matematica e Educacdo Matematica 9(1) (2024),
pp- 1-21. DOI: 10.34179/revisem.v9il.19521.

[13] R.L.No6se V.M. R. da Silva. “Compondo/decompondo poliedros convexos com o GeoGebra
3D”. Em: Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics. 2019, pp. 010364-1-7. DOI: 10.5540/03.2020.007.01.0364.

[14] R.L.Noése V. M. R. da Silva. “Radicais duplos no calculo do volume de poliedros convexos”.
Em: Revista Eletronica Paulista de Matematica 16 (2019), pp. 53-70. Do1: 10.21167/
cqdvol16201923169664r1nvmrs5370.

[15] R. L. Nés e V. M. R. da Silva. “Using GeoGebra 3D in the composition/decomposition of
convex polyhedra for volume calculation”. Em: Journal of Engineering Research 3(2)
(2022), pp. 1-11. DOL: 10.22533/at.ed.3173222221210.

[16] J. J. da Silva. “A demonstragdo matematica da perspectiva da logica matematica”. Em:
Bolema 15(18) (2002), pp. 68-78.

[17] V.M. R. da Silva. “Uma visao dindmica de alguns teoremas geométricos classicos via Geo-
Gebra”. Dissertagdo de mestrado. UTFPR Curitiba, 2022.

[18] V. M. R. da Silva e R. L. No6s. Calculando o volume de poliedros convexos. la. ed.
Curitiba: CRV, 2018. 1SBN: 978-85-444-2681-4.

[19] V.M. R. da Silva, R. L. Nés e M. Sano. “Uma visao dinamica do teorema de Pitagoras via
GeoGebra”. Em: Revista do Instituto GeoGebra Internacional de Sao Paulo 12(1)
(2023), pp. 62-77. DOI: 10.23925/2237-9657.2023.v12i1p062-077.

[20] E.W. Weisstein. Napoleon’s theorem. Online. Acessado em 08/02/2025, https://mathworld.
wolfram.com/NapoleonsTheorem.html.

DOI: 10.5540/03.2026.012.01.0257 010257-7 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0257

