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Resumo. Apresentamos neste trabalho atividades para investigar dinamicamente os teoremas de
Pitágoras e de Napoleão e o ponto de Fermat. As atividades foram construídas em páginas da
plataforma GeoGebra, as quais podem ser acessadas por links externos e utilizadas pelo professor
de matemática da Educação Básica e do Ensino Superior. Concluímos que o emprego do GeoGebra
dinamiza demonstrações geométricas e que as atividades propostas estão em consonância com o
que estabelece a Base Nacional Comum Curricular sobre o uso de tecnologias digitais no ensino de
matemática.
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1 Introdução

Em matemática, “uma demonstração é uma entidade objetivamente existente no espaço lógico
[...] é algo capaz de induzir a uma vivência subjetiva indutora de convicção em um agente ma-
temático real” ([16], p. 69). Com o advento do computador e o emprego deste para auxiliar no
desenvolvimento de demonstrações, surgem os ambientes de geometria dinâmica, dentre os quais
destacamos o GeoGebra [4]. Como a leitura de uma demonstração “exige que se desloque, frequen-
temente, o olhar para as representações visual, linguística e simbólica” ([9], p. 12), as tecnologias
digitais permitem “tornar manipuláveis as representações semióticas como se fossem objetos con-
cretos” ([9], p. 5). Logo, “entende-se que as demonstrações feitas em ambientes estáticos (papel
ou quadro) podem dificultar a percepção das variações dos registros, porque tais ambientes não
permitem variações concomitantes” ([9], p. 14).

Quanto à demonstração em matemática, a Base Nacional Comum Curricular - BNCC [2] destaca
que: “Apesar de a Matemática ser, por excelência, uma ciência hipotético–dedutiva, porque suas
demonstrações se apoiam sobre um sistema de axiomas e postulados, é de fundamental importância
também considerar o papel heurístico das experimentações na aprendizagem da Matemática” ([2],
p. 265). Ainda, a quinta competência específica de Matemática e suas Tecnologias para o Ensino
Médio da BNCC associa o emprego de tecnologias à demonstração em matemática: “Investigar e
estabelecer conjecturas a respeito de diferentes conceitos e propriedades matemáticas, empregando
estratégias e recursos, como observação de padrões, experimentações e diferentes tecnologias, iden-
tificando a necessidade, ou não, de uma demonstração cada vez mais formal na validação das
referidas conjecturas” ([2], p. 531).
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Desta forma, e devido também às nossas experiências com o GeoGebra [5, 11–15, 18, 19],
apresentamos neste trabalho atividades dinâmicas para comprovar três teoremas geométricos clás-
sicos [17]: o teorema de Pitágoras, o teorema de Napoleão e o ponto de Fermat. As experiências
dinâmicas, elaboradas de modo a fornecer recursos didáticos para auxiliar o professor de matemá-
tica na abordagem desses teoremas, foram construídas em páginas do GeoGebra que podem ser
acessadas por links externos, apresentados no texto, e manipuladas via App.

2 O Teorema de Pitágoras
Para o Teorema 2.1, Loomis [7] organizou 256 demonstrações geométricas. Estas foram dividi-

das em dez grupos, cada um deles com um método de demonstração. As demonstrações geométricas
de números 9 a 32 consistem na divisão dos quadrados construídos sobre os lados de um triângulo
retângulo em partes congruentes. Nesse grupo, selecionamos a demonstração 9, que corresponde à
equicomposição de Henry Perigal (1801-1898) [10], ilustrada na Figura 1.

Figura 1: Demonstração geométrica número 9 de Loomis: a equicomposição de Perigal. Fonte: Silva [17].

Teorema 2.1 (de Pitágoras). Se ABC é um triângulo retângulo em C, então o quadrado da
medida da hipotenua AB é igual à soma dos quadrados das medidas dos catetos AC e BC.

Demonstração. Sejam: o triângulo ABC, retângulo em Ĉ e de lados AB = c, BC = a e AC = b;
os quadrados ACFG, CBDE e ABIH construídos, respectivamente, sobre os lados AC, BC e
AB do triângulo ABC; os pontos J , K, L e M , pontos médios dos lados AB, HA, IH e BI,
respectivamente, do quadrado ABIH; os pontos P , Q, R e S interiores ao quadrado ABIH, com
JP ∥ RL ∥ AC e SM ∥ KQ ∥ BC, onde S ∈ JP , Q ∈ RL, R ∈ SM e P ∈ KQ; o ponto O, centro
do quadrado CBDE; os pontos T , U , V e W pertencentes, respectivamente, aos lados CB, EC,
DE e BD do quadrado CBDE, tais que UW ∥ AB e V T ⊥ UW - Figura 1.

Desta forma, temos que o quadrado PQRS é congruente ao quadrado ACFG, V T ∥ BI,
V O ≡ OT ≡ BM e AU ≡ BW ≡ JP ≡ SM ≡ RL ≡ KQ ≡ DV ≡ EU ≡ CT . Ainda, como
UW ∥ AB e AJ ≡ JB ≡ UO ≡ OW ≡ AK, os quadriláteros HLQK, IMRL, BJSM , AKPJ ,
UCTO, TBWO, WDVO e V EUO são congruentes. Logo, temos que:

A(ABIH) =A(PQRS) + 4A(AKPJ);

A(ABIH) =A(ACFG) + 4A(V EUO);

A(ABHI) =A(ACFG) +A(CBDE). (1)
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Como os lados dos quadrados ABHI, ACFG e CBDE medem, respectivamente, c, b e a,
concluímos de (1) que c2 = a2 + b2.

A demonstração da equicomposição de Perigal pode ser efetuada com mais detalhes, como
em Fernandes [3]. Construímos no GeoGebra uma atividade dinâmica para a equicomposição de
Perigal, disponível em https://www.geogebra.org/m/vzjfw5vk. No GeoGebra App, os vértices
A, B e C podem ser movimentados dinamicamente para explorar diferentes configurações do
triângulo retângulo e verificar a equivalência de áreas dos quadriláteros da equicomposição.

3 O Teorema de Napoleão
O Teorema 3.1 é atribuído a Napoleão Bonaparte (1769-1821), político, militar e imperador

francês. Esse teorema estabelece que os centros dos triângulos equiláteros construídos sobre os
lados de um triângulo são os vértices de um triângulo equilátero. Uma propriedade adicional dos
triângulos equiláteros construídos sobre os lados do triângulo inicial, também atribuída a Napoleão,
é que as circunferências circunscritas concorrem no primeiro ponto de Fermat [20]. O teorema de
Napoleão é um caso especial do teorema de Petr-Neumann-Douglas [6].

Teorema 3.1 (de Napoleão). Se ACD, BCE e ABF são triângulos equiláteros construídos sobre
os lados de um triângulo ABC, então o triângulo GHI, cujos vértices são, respectivamente, os
baricentros dos triângulos equiláteros, é equilátero.

Demonstração. Sejam o triângulo ABC, os triângulos equiláteros ABF , ACD e BCE, construídos
sobre os lados de ABC, e os pontos G, H e I, baricentros dos triângulos ACD, BCE e ABF ,
respectivamente - Figura 2(a).

(a) (b) (c) (d)

Figura 2: Triângulos para a prova do Teorema 3.1. Fonte: Silva [17].

Os triângulos ECA e BCD são congruentes pelo caso LAL (lado-ângulo-lado) [8], uma vez que
EC ≡ BC, DC ≡ AC e ∠ECA ≡ ∠BCD - Figura 2(a). Logo, BD ≡ AE. Analogamente, temos
que:

CF ≡ BD ≡ AE. (2)
Empregando as propriedades do baricentro [8] nos triângulos equiláteros BCE e ACD - Figura

2(b), verificamos que ∠HCB = 30◦ e ∠ACG = 30◦. Logo:

∠HCG ≡∠ECA; (3)

HC =
2

3
·
√
3

2
· EC =

√
3

3
· EC; (4)

CG =
2

3
·
√
3

2
·AC =

√
3

3
·AC. (5)
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Das igualdades (4) e (5), obtemos que:

HC

EC
=

CG

AC
=

√
3

3
. (6)

De (3) e (6), concluímos que os triângulos HCG e ECA são semelhantes (caso LAL). Portanto:

HC

EC
=

CG

AC
=

GH

AE
=

√
3

3
. (7)

De forma análoga, temos nos triângulos BAD e IAG - Figura 2(c), que ∠IAB = 30◦ e ∠CAG =
30◦. Logo:

∠IAG ≡∠BAD; (8)

AG =
2

3
·
√
3

2
·AD =

√
3

3
·AD; (9)

AI =
2

3
·
√
3

2
·BA =

√
3

3
·BA. (10)

Das igualdades (9) e (10), constatamos que:

AG

AD
=

AI

BA
=

√
3

3
. (11)

De (8) e (11), concluímos que os triângulos IAG e BAD são semelhantes (caso LAL). Desta
maneira:

AG

AD
=

AI

BA
=

IG

BD
=

√
3

3
. (12)

Analisando os triângulos IBH e FBC - Figura 2(d), temos que ∠ABI = 30◦ e ∠CBH = 30◦.
Logo:

∠IBH ≡∠CBF ; (13)

IB =
2

3
·
√
3

2
·BF =

√
3

3
·BF ; (14)

BH =
2

3
·
√
3

2
·BC =

√
3

3
·BC. (15)

Das igualdades (14) e (15), temos que:

IB

BF
=

BH

BC
=

√
3

3
. (16)

Assim, concluímos de (13) e (16) que os triângulos IBH e FBC são semelhantes (caso LAL).
Portanto:

IB

BF
=

BH

BC
=

IH

FC
=

√
3

3
. (17)

Comparando as igualdades (7), (12) e (17), obtemos que:

IH

FC
=

IG

BD
=

GH

AE
=

√
3

3
. (18)

Finalmente, de (2) e (18), concluímos que:

IH ≡ IG ≡ GH. (19)

A relação (19) estabelece que os lados do triângulos GHI são congruentes. Portanto, o triângulo
GHI é equilátero.
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Organizamos no GeoGebra uma atividade dinâmica para o teorema de Napoleão, disponível
em https://www.geogebra.org/m/amhb8fng. No GeoGebra App, os pontos A, B e C podem ser
movimentados dinamicamente, o que permite observar novas configurações do triângulo ABC e
verificar a medida dos lados do triângulo cujos extremos são os baricentros dos triângulos equiláteros
construídos sobre os lados de ABC.

4 O Ponto de Fermat

O primeiro ponto de Fermat (ou simplesmente ponto de Fermat ou ponto de Torricelli) é
um problema proposto por Pierre de Fermat (1601-1665) a Evangelista Torricelli (1608-1647),
matemático e físico italiano que inventou o barômetro. Em uma carta, Fermat desafiou Torricelli
a solucionar o Problema 4.1.

Problema 4.1. Determinar o ponto tal que a soma de suas distâncias aos vértices de um triângulo
seja mínima.

Torricelli apresentou várias soluções para o problema proposto por Fermat. Em uma dessas
soluções, observou que as circunferências circunscritas aos triângulos equiláteros construídos ex-
ternamente sobre os lados do triângulo são concorrentes em um ponto [1]. Esse ponto recebeu o
nome de Fermat, o proponente do problema.

Apresentamos nesta seção a demonstração baseada no Teorema 3.1 (de Napoleão) [1].

Demonstração. Sejam: o triângulo ABC; o ponto M , interno ao triângulo ABC; o triângulo ABM ;
o triângulo A′BM ′, oriundo da rotação de 60◦ do triângulo ABM em torno do vértice B - Figura
3(a).

(a) (b)

Figura 3: Triângulos para a prova do Problema 4.1. Fonte: Silva [17].

Por construção, temos que o triângulo BMM ′ é equilátero. Logo, MB ≡ M ′B e, como
MA ≡M ′A′, temos que:

MA+MB +MC = A′M ′ +M ′M +MC. (20)

O ponto A′ é obtido pela rotação de A em torno de B. Logo, a posição de A′ não depende de
M e temos que MA + MB + MC ≥ A′C. Assim, a soma em (20) é mínima quando M ∈ A′C.
Para tanto, é preciso que BM̂A′ = 60◦4.

4Se a rotação fosse feita em torno do ponto A, deveríamos ter AM̂A′ = 60◦.
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Construindo triângulos equiláteros sobre os lados do triângulo ABC, obtemos os triângulos
ABA′, ACC ′ e BCB′, e as retas

←−→
A′C,

←−→
AB′ e

←−→
BC ′ se intersectam em um ponto - Figura 3(b).

O Teorema 3.1 (de Napoleão) garante que as retas
←−→
A′C,

←−→
AB′ e

←−→
BC ′ se intersectam em um ponto

e que o ângulo entre elas é de 120◦. Temos então que AB′ ≡ BC ′ ≡ A′C = MA + MB + MC,
sendo M o ponto de Fermat. Portanto, o ponto de Fermat é único e se encontra na interseção
das retas que passam pelos vértices opostos dos triângulos equiláteros construídos sobre os lados
do triângulo ABC. No caso em que um dos ângulos do triângulo ABC é maior do que ou igual a
120◦, o ponto de Fermat será o vértice correspondente ao maior ângulo do triângulo.

Construímos no GeoGebra uma atividade dinâmica para o ponto de Fermat, disponível em
https://www.geogebra.org/m/yyypd3p8. No GeoGebra App, os vértices do triângulo ABC e o
ponto M , interior a ABC, podem ser movidos dinamicamente para investigar novas configurações
do triângulo e verificar a distância mínima quando M coincide com o ponto de Fermat.

5 Considerações Finais
Propomos neste trabalho atividades dinâmicas, construídas em páginas da plataforma GeoGe-

bra e acessadas via links externos, para comprovar três teoremas geométricos clássicos: o teorema
de Pitágoras, o teorema de Napoleão e o ponto de Fermat. Na composição das atividades, apresen-
tamos inicialmente a demonstração formal dos teoremas para depois conduzir o(a) leitor(a) para
uma experimentação dinâmica no GeoGebra. Essa dinâmica segue o método de apresentação de
Alexander Bogomolny (1948-2018), matemático estadunidense nascido na Rússia, cujos trabalhos
estão disponíveis na internet, como, por exemplo, em Bogomolny [1]. As experiências dinâmicas
compõem atividades que podem ser aplicadas na Educação Básica, na Licenciatura em Matemá-
tica e no Mestrado Profissional em Matemática em Rede Nacional - PROFMAT. Almejamos que
as mesmas sirvam de inspiração aos(às) professores(as) de matemática da Educação Básica e do
Ensino Superior no tocante ao emprego de tecnologias digitais como o GeoGebra nas aulas de
geometria.
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