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Resumo. Este estudo propõe um método para classificar epítopos em três categorias: MHC
classe I, MHC classe II e epítopos de células B, utilizando dados do Immune Epitope Database
(IEDB) e técnicas de aprendizado de máquina. A classificação de epítopos é importante para
o desenvolvimento de vacinas e terapias imunológicas, pois permite identificar alvos específicos e
prever respostas imunes. Parâmetros físico-químicos foram usados para representar as sequências
de aminoácidos. O modelo Random Forest (RF) obteve os melhores resultados, com acurácia de
84,32% e F1-score macro de 0,8276, destacando-se na classificação de MHC I (F1-score de 0,9557).
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1 Introdução

O sistema imune humano é composto por dois eixos complementares: a imunidade inata, que
atua como primeira linha de defesa, mediada por barreiras físicas (como pele e mucosas), células
fagocíticas (macrófagos, neutrófilos) e moléculas pró-inflamatórias de resposta rápida a patógenos;
e a imunidade adaptativa, caracterizada por especificidade e memória imunológica, sustentada por
linfócitos B e T. Esta última depende do reconhecimento preciso de epítopos - regiões molecula-
res críticas derivadas de antígenos (proteínas, lipídios ou carboidratos) capazes de interagir com
receptores de linfócitos (BCR/TCR) ou anticorpos [3].

Os epítopos B, que podem ser lineares (sequências contínuas de aminoácidos) ou conformaci-
onais (dependentes da estrutura tridimensional do antígeno), permitem a neutralização direta de
patógenos por anticorpos. Já os epítopos T, processados e apresentados por moléculas do Complexo
Principal de Histocompatibilidade (MHC), direcionam respostas celulares: epítopos associados a
MHC I (expressos em todas as células nucleadas) são reconhecidos por linfócitos T CD8+ ci-
totóxicos, induzindo apoptose de células infectadas ou neoplásicas, enquanto epítopos ligados a
MHC II (expressos por células apresentadoras de antígenos, como dendríticas) são reconhecidos
por linfócitos T CD4+ auxiliares, modulando a ativação de outras células imunes [13, 15].

Aplicações translacionais exploram a especificidade de epítopos para desenvolver vacinas de
próxima geração e terapias personalizadas. Vacinas de mRNA contra SARS-CoV-2, por exemplo,
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codificam a proteína spike, cujos epítopos B (domínio RBD) e T (MHC I/II) induzem neutrali-
zação viral e imunidade celular duradoura [11]. Em oncologia, algoritmos preditivos identificam
neoantígenos tumorais para vacinas personalizadas, enquanto células CAR-T direcionadas a epíto-
pos de superfície (ex.: CD19) demonstram eficácia em neoplasias hematológicas [6, 9]. Em doenças
autoimunes, estratégias de tolerância imunológica envolvem modificação de epítopos autorreativos
ou expansão de células T reguladoras (Tregs), visando suprimir respostas patogênicas [10, 16].

Avanços tecnológicos, como predição de epítopos via inteligência artificial, estão revolucionando
a imunoterapia. Algoritmos de machine learning utilizam bibliotecas proteômicas para identificar
epítopos imunogênicos, otimizando o desenvolvimento de intervenções precisas [12]. Trabalhos
recentes, como os de Vita et al. [15] na classificação de epítopos de MHC-I, Jensen et al. [4] em
MHC-II e Jespersen et al. [5] em epítopos de células B, demonstram como métodos computacionais
refinam a seleção de alvos terapêuticos. Desta forma, a integração entre imunologia básica e
inovação translacional posiciona os epítopos como eixos estratégicos para enfrentar desafios globais
em saúde, desde pandemias até resistência terapêutica em oncologia.

Neste contexto, este artigo tem como objetivo principal propor uma abordagem para a classi-
ficação de epítopos em três categorias fundamentais: MHC classe I, MHC classe II e epítopos de
células B, utilizando dados extraídos do Immune Epitope Database (IEDB) e algoritmos de apren-
dizado de máquina. A classificação adequada desses epítopos é essencial para o desenvolvimento de
vacinas, imunoterapias e diagnósticos imunológicos, uma vez que permite a identificação de alvos
imunogênicos específicos e a previsão de respostas imunes adaptativas.

2 Metodologia
Os dados utilizados neste estudo foram construídos utilizando os conjuntos de dados de epí-

topos disponíveis no Immune Epitope Database (IEDB) [15], uma das principais fontes de dados
imunológicos, que contém informações sobre epítopos de células B, MHC I/II, além de ligantes de
células T. Após a obtenção dos dados no IEDB foi realizada uma seleção para garantir a qualidade
e relevância dos dados.

Primeiramente, as sequências de aminoácidos que apareciam tanto nos conjuntos de dados de
MHC quanto nos de células T foram selecionadas, gerando um conjunto único de MHC. Esse
passo é importante pois, as células T reconhecem antígenos apenas quando esses antígenos são
processados e apresentados por moléculas do MHC. Essa relação é fundamental para a ativação
das células T e, consequentemente, para a resposta imune adaptativa. Deste modo, ao selecionar
apenas as sequências comuns aos dois conjuntos de dados, garantem-se epítopos biologicamente
relevantes, ou seja, que sejam capazes de interagir tanto com o MHC quanto com os receptores das
células T (TCRs).

Em seguida, foram selecionadas apenas as sequências únicas que apareciam tanto no conjunto
de MHC quanto no conjunto de células B. Para evitar um desbalanceamento excessivo dos dados,
apenas 15.000 sequências de células B foram incluídas no conjunto final. Resultando em 43.975
amostras, sendo 17.933 de MHC classe I, 11.042 de MHC classe II e 15.000 de células B.

A seleção de sequências únicas é importante porque elimina redundâncias nos dados. Essa
redundância pode ocorrer devido a diferentes fatores, como contextos experimentais variados ou
anotações repetidas. Por exemplo, uma mesma sequência de aminoácidos pode ser reportada
múltiplas vezes em estudos distintos, com pequenas variações nas condições experimentais ou nos
métodos de detecção. Essas duplicações podem distorcer a representatividade dos dados e afetar
a qualidade e confiabilidade do conjunto final.

Com o conjunto de dados construído, as sequências de aminoácidos foram convertidas em
valores numéricos, utilizando uma variedade de parâmetros físico-químicos e estruturais. Esses
parâmetros foram escolhidos com base em sua relevância para a interação entre epítopos e o sistema
imunológico, sendo amplamente utilizados na literatura para caracterizar propriedades biológicas
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e funcionais de peptídeos. Neste trabalho, combinamos abordagens inspiradas em dois estudos
anteriores: Kozlova et al. [8], que destaca a importância de parâmetros como hidrofobicidade e
carga para a classificação de epítopos, e Tayebi, Ali e Patterson [14], que utiliza métricas como
entropia de Shannon e similaridade de motivos para análise de sequências imunológicas.

No total, 33 parâmetros foram utilizados, incluindo: índice alifático, grau de hidropaticidade
(índice GRAVY), ponto isoelétrico, hidrofobicidade média, percentual de aminoácidos carregados
positivamente, percentual de aminoácidos carregados negativamente, percentual de aminoácidos
sem carga, comprimento da sequência, distribuição de carga, similaridade de motivos, entropia
de Shannon, índice de Simpson e a frequência de aminoácidos específicos (A, C, D, E, F, G, H,
I, K, L, M, N, P, Q, R, S, T, V, W, Y). Como o comprimento das sequências é variável, alguns
parâmetros como hidrofobicidade, distribuição de carga, os percentuais de aminoácidos carregados
positivamente, negativamente e sem carga foram fornecidos diretamente em forma percentual,
garantindo que fossem comparáveis entre sequências de diferentes tamanhos. Para os demais
atributos, que não estavam em forma percentual, foi aplicada a normalização min-max, conforme
a equação (1).

xnorm =
x−min(x)

max(x)−min(x)
. (1)

Essa normalização foi realizada para garantir que todos os parâmetros estivessem na mesma
escala, evitando que variáveis com magnitudes maiores afetassem os algoritmos. Após a normali-
zação, o conjunto de dados foi dividido em conjuntos de treinamento e teste utilizando a técnica
de hold-out na proporção 70/30, com a divisão sendo estratificada para preservar a distribuição
das classes em ambos os conjuntos. O conjunto de treinamento (70% dos dados) foi utilizado para
a busca e seleção dos melhores parâmetros para os algoritmos de classificação por meio da busca
em grade combinada com validação cruzada de 5-folds.

A busca em grade é uma técnica exaustiva que testa todas as combinações possíveis de hi-
perparâmetros pré-definidos para cada algoritmo, com o objetivo de encontrar a configuração que
maximiza o desempenho do modelo [1]. Já a validação cruzada (5-folds) divide o conjunto de
treinamento em 5 partes, utilizando 4 partes para treinamento e 1 para validação, em um processo
iterativo que garante que cada fold seja usado como conjunto de validação uma vez. Essa técnica é
essencial para evitar overfitting, proporcionando uma estimativa mais robusta do desempenho do
modelo em dados não vistos [2, 7].

Os algoritmos de aprendizado de máquina selecionados para o experimento foram: O Ran-
dom Forest (RF), baseado em ensemble learning, emprega múltiplas árvores de decisão treinadas
em subconjuntos aleatórios dos dados, promovendo robustez e reduzindo overfitting por meio da
agregação de predições. O K-Nearest Neighbors (KNN) opera sob o princípio de similaridade, clas-
sificando instâncias com base na proximidade no espaço de características. O Gradient Boosting
(GB) utiliza uma estratégia iterativa de otimização, em que modelos subsequentes são ajustados
para minimizar os resíduos dos anteriores, resultando em alta capacidade preditiva. O Support
Vector Machine (SVM) busca um hiperplano ótimo em espaços de alta dimensão para separar os
dados. Por fim, o Multilayer Perceptron (MLP), uma arquitetura de rede neural artificial, utiliza
múltiplas camadas de neurônios interconectados com funções de ativação não lineares possibilitando
a captura de padrões complexos [2]. Para a avaliação dos modelos, foram utilizadas métricas como
acurácia (ACC), precisão (Pre), sensibilidade (Se), especificidade (Sp), F1-score (F1) e área sob a
curva ROC (AUC). Considerando que se trata de um problema de classificação multiclasse, na qual
há mais de duas categorias a serem previstas, foram calculadas as versões macro e micro dessas
métricas para garantir uma avaliação mais abrangente do desempenho dos modelos. A abordagem
macro calcula a métrica para cada classe individualmente e tira a média simples dos resultados.
Já a abordagem micro agrega os acertos e erros de todas as classes, calculando a métrica como se
fosse um problema único.
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3 Resultados

A Tabela 1 apresenta as métricas tanto macro quanto micro obtidas por cada método. Como
os dados são desbalanceados, a métrica de interesse principal é a métrica macro, que trata todas
as classes de forma igualitária, garantindo que classes minoritárias não sejam negligenciadas na
avaliação. O RF destacou-se como o modelo com melhor desempenho geral, com uma acurácia de
84,32% e um F1-score macro de 0,8276. Além disso, o RF obteve a maior AUC macro de 0,9477,
revelando uma excelente capacidade de distinguir entre as classes. O GB e o MLP apresentaram
resultados próximos, com acurácias de 83,82% e 83,43% respectivamente, e F1-scores macro de
0,8216 e 0,8180. Esses modelos também demonstraram alta especificidade macro de 92,19% para
o GB e 92,09% para o MLP, sugerindo uma boa capacidade de evitar os falsos positivos.

Por outro lado, o KNN e o SVM tiveram desempenhos inferiores com acurácias de 76,93% e
66,60%, respectivamente. A AUC macro do SVM de 0,8345 foi significativamente menor que a dos
outros modelos, indicando dificuldades na separação das classes.

Tabela 1: Métricas de Desempenho dos Modelos.

Modelo ACC
Se Sp Pre F1-score AUC

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

RF 0,8432 0,8317 0,8432 0,9247 0,9216 0,8268 0,8432 0,8276 0,8432 0,9477 0,9585
KNN 0,7693 0,7461 0,7693 0,8852 0,8847 0,7469 0,7693 0,7460 0,7693 0,9078 0,9208
SVM 0,6660 0,6502 0,6660 0,8400 0,8330 0,6487 0,6660 0,6442 0,6660 0,8345 0,7434
GB 0,8382 0,8241 0,8382 0,9219 0,9191 0,8204 0,8382 0,8216 0,8382 0,9448 0,9562

MLP 0,8343 0,8232 0,8343 0,9209 0,9172 0,8180 0,8343 0,8180 0,8343 0,9409 0,9541

A Tabela 2 por sua vez, apresenta métricas como sensibilidade, especificidade, precisão e F1-
score para as categorias de epítopos: Células B (C1), MHC I (C2) e MHC II (C3). O RF novamente
se destacou, especialmente na classificação de MHC I, com sensibilidade de 95,65%, especificidade
de 96,89%, precisão de 95,49% e F1-score de 0,9557. Esses valores indicam que o RF é altamente
eficaz na identificação de MHC I. Para MHC II, o RF também apresentou o melhor desempenho
entre os modelos, com F1-score de 0,7457, embora essa métrica seja inferior à obtida para MHC I,
indicando maior complexidade nessa classe.

Tabela 2: Desempenho por Classe de Cada Modelo.
Modelo Classe Se Sp Pre F1 Modelo Classe Se Sp Pre F1

RF
C1 0,7438 0,9158 0,8231 0,7814

GB
C1 0,7522 0,9024 0,8022 0,7764

C2 0,9565 0,9689 0,9549 0,9557 C2 0,9556 0,9685 0,9543 0,9550
C3 0,7948 0,8895 0,7023 0,7457 C3 0,7644 0,8949 0,7046 0,7333

KNN
C1 0,6699 0,8519 0,7042 0,6866

MLP
C1 0,7213 0,9163 0,8194 0,7672

C2 0,9370 0,9126 0,8808 0,9080 C2 0,9543 0,9699 0,9563 0,9553
C3 0,6313 0,8913 0,6558 0,6433 C3 0,7939 0,8764 0,6782 0,7315

SVM
C1 0,4704 0,8023 0,5561 0,5096

Rótulos
C1: Células B

C2 0,8578 0,9503 0,9225 0,8890 C2: MHC I
C3 0,6223 0,7675 0,4675 0,5339 C3: MHC II

O GB e o MLP tiveram desempenhos semelhantes ao RF, com F1-scores de 0,9550 e 0,9553 para
MHC I, respectivamente. No entanto, para MHC II, o GB obteve um F1-score de 0,7333, enquanto
o MLP alcançou 0,7315, ambos ligeiramente inferiores ao RF. Para Células B, o RF também se
saiu melhor, com F1-score de 0,7814, comparado a 0,7764 do GB e 0,7672 do MLP. Já o KNN e o
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SVM apresentaram dificuldades, especialmente na classificação de MHC II, com F1-score de 0,6433
e 0,5339, respectivamente. Para Células B, o SVM teve o pior desempenho (F1-score de 0,5096),
indicando baixa generalização. Na Figura 1 são apresentados a matriz de confusão e a curva ROC
para o RF, onde pode-se observar o desempenho satisfatório na classificação da classe MHC I.
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(b) Curva ROC e AUC para cada classe.

Figura 1: Resultados do Classificador Random Forest. Fonte: dos autores.

4 Discussões
Esses resultados tem implicações importantes para o desenvolvimento de vacinas de nova gera-

ção. A capacidade de classificar epítopos com alta precisão e rapidez pode acelerar o processo de
identificação de candidatos a vacinas, reduzindo tempo e custos. Comparado a métodos padrão
disponíveis no IEDB, como o NetMHC e o BepiPred, que utilizam ferramentas separadas para clas-
sificação de epítopos, o uso de métodos de machine learning, como o RF, pode reduzir o acúmulo
de erros associados a cada ferramenta individual. O NetMHC, por exemplo, utiliza redes neurais
artificiais para prever a ligação de peptídeos ao MHC, enquanto o BepiPred emprega modelos de
Markov para prever epítopos lineares de células B. Embora eficazes, essas ferramentas realizam
apenas classificações independentes, enquanto a técnica aqui apresentada realiza a classificação do
epítopo tanto em relação à peptídeos ao MHC quanto em relação à células B e, por isso, não possui
erros cumulativos. É importante salientar que o classificador proposto analisa o epítopo, não a
cadeia completa como seus predecessores.

Embora este trabalho não apresente uma ferramenta que examine profundamente a sequência
em busca de epítopos e depois os classifique, é importante ressaltar que isso pode ser feito de
maneira relativamente simples. Uma abordagem viável é o uso de janelas deslizantes, em que a
sequência de proteínas é dividida em segmentos de tamanho fixo e cada segmento é avaliado como
epítopo ou não. Após a identificação, os epítopos podem ser classificados em categorias (células B,
MHC I ou MHC II) utilizando os métodos de aprendizado de máquina propostos neste trabalho
como o RF, que demonstrou excelente desempenho na classificação de epítopos neste estudo.

A utilização de parâmetros físico-químicos foi fundamental para o sucesso deste trabalho. Esses
parâmetros capturam informações importantes sobre as propriedades e estrutura das sequências de
aminoácidos como hidrofobicidade, carga, estabilidade térmica e frequência de aminoácidos, que
são críticas para a interação dos epítopos com o sistema imunológico. A inclusão desses parâmetros
permitiu que os modelos aprendessem padrões complexos e não lineares nos dados, o que contribuiu
para a alta precisão dos resultados. Além disso, a normalização desses parâmetros em porcentagem
garantiu que sequências de diferentes comprimentos pudessem ser comparadas de forma equitativa,
sendo essencial para a classificação de epítopos.
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A interpretabilidade dos parâmetros físico-químicos é uma vantagem significativa deste traba-
lho. Diferentemente de métodos baseados em redes neurais profundas, que muitas vezes funcionam
como “caixas pretas”, os parâmetros físico-químicos são facilmente interpretáveis e podem fornecer
informações valiosas sobre as características dos epítopos. Por exemplo, um alto índice alifático
pode indicar maior estabilidade térmica, enquanto um alto grau de hidrofobicidade pode sugerir
uma tendência a interagir com ambientes lipídicos. Essa interpretabilidade permite que pesqui-
sadores e desenvolvedores de vacinas entendam melhor as razões por trás das classificações feitas
pelos modelos, o que pode auxiliar no desenvolvimento de vacinas e terapias imunológicas.

A importância dos parâmetros físico-químicos é ainda mais evidente quando consideramos que
cada sequência de aminoácidos pode ter um comprimento diferente, o que adiciona uma camada
adicional de complexidade à classificação. Sequências mais longas podem conter mais informações,
mas também podem introduzir ruído ou redundância, enquanto sequências mais curtas podem
não capturar todas as características relevantes. A normalização dos parâmetros em porcentagem
permite que sequências de diferentes comprimentos sejam comparadas de forma justa, garantindo
que o modelo não seja enviesado por diferenças no comprimento das sequências.

5 Considerações Finais
Este trabalho propôs a classificação de epítopos em três categorias: MHC classe I, MHC classe

II e epítopos de células B, utilizando dados extraídos do Immune Epitope Database (IEDB) e
algoritmos de aprendizado de máquina. A classificação adequada desses epítopos é crucial para o
desenvolvimento de vacinas, imunoterapias e diagnósticos imunológicos, pois permite a identificação
de alvos imunogênicos específicos e a previsão de respostas imunes adaptativas.

Os resultados demonstraram que o modelo de Random Forest (RF) destacou-se como o mais
eficaz, com uma acurácia de 84,32% e um F1-score macro de 0,8276, superando outros algorit-
mos como Gradient Boosting (GB), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN)
e Support Vector Machine (SVM). O RF mostrou-se particularmente eficiente na classificação de
epítopos de MHC I, com um F1-score de 0,9557, e também obteve bons resultados para MHC II e
epítopos de células B, embora com menor desempenho em comparação ao MHC I. Esses resultados
indicam que o RF é uma ferramenta eficiente para a classificação de epítopos, especialmente em
cenários onde a precisão e a capacidade de generalização são essenciais.

A utilização de parâmetros físico-químicos e a normalização desses parâmetros corroboraram
para os resultados, permitindo que os modelos aprendessem padrões complexos e não lineares nos
dados, além de permitir que sequências de diferentes comprimentos pudessem ser comparadas de
forma equitativa. Além disso, a abordagem proposta pode ser facilmente adaptada para incluir
técnicas como janelas deslizantes, que permitem a identificação de epítopos em sequências de
proteínas mais longas, seguida de sua classificação em categorias específicas. Futuros trabalhos
podem expandir o método para identificar epítopos em sequências mais longas.
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