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Resumo. Este estudo propoe um método para classificar epitopos em trés categorias: MHC
classe I, MHC classe II e epitopos de células B, utilizando dados do Immune Epitope Database
(IEDB) e técnicas de aprendizado de maquina. A classificagdo de epitopos é importante para
o desenvolvimento de vacinas e terapias imunolégicas, pois permite identificar alvos especificos e
prever respostas imunes. Parametros fisico-quimicos foram usados para representar as sequéncias
de aminoacidos. O modelo Random Forest (RF) obteve os melhores resultados, com acuracia de
84,32% e F1-score macro de 0,8276, destacando-se na classificagao de MHC I (F1-score de 0,9557).
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1 Introducao

O sistema imune humano é composto por dois eixos complementares: a imunidade inata, que
atua como primeira linha de defesa, mediada por barreiras fisicas (como pele e mucosas), células
fagociticas (macrofagos, neutrofilos) e moléculas pro-inflamatoérias de resposta rapida a patogenos;
e a imunidade adaptativa, caracterizada por especificidade e memoria imunolbgica, sustentada por
linfécitos B e T. Esta ultima depende do reconhecimento preciso de epitopos - regides molecula-
res criticas derivadas de antigenos (proteinas, lipidios ou carboidratos) capazes de interagir com
receptores de linfocitos (BCR/TCR) ou anticorpos [3].

Os epitopos B, que podem ser lineares (sequéncias continuas de aminoacidos) ou conformaci-
onais (dependentes da estrutura tridimensional do antigeno), permitem a neutralizagao direta de
patogenos por anticorpos. Jé os epitopos T, processados e apresentados por moléculas do Complexo
Principal de Histocompatibilidade (MHC), direcionam respostas celulares: epitopos associados a
MHC I (expressos em todas as células nucleadas) sao reconhecidos por linfocitos T CD8+ ci-
totoxicos, induzindo apoptose de células infectadas ou neoplasicas, enquanto epitopos ligados a
MHC II (expressos por células apresentadoras de antigenos, como dendriticas) sdo reconhecidos
por linfocitos T CD4+ auxiliares, modulando a ativagao de outras células imunes [13, 15].

Aplicagoes translacionais exploram a especificidade de epitopos para desenvolver vacinas de
proxima geracao e terapias personalizadas. Vacinas de mRNA contra SARS-CoV-2, por exemplo,
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codificam a proteina spike, cujos epitopos B (dominio RBD) e T (MHC I/II) induzem neutrali-
zacao viral e imunidade celular duradoura [11]. Em oncologia, algoritmos preditivos identificam
neoantigenos tumorais para vacinas personalizadas, enquanto células CAR-T direcionadas a epito-
pos de superficie (ex.: CD19) demonstram eficicia em neoplasias hematologicas [6, 9]. Em doengas
autoimunes, estratégias de tolerancia imunolégica envolvem modificagao de epitopos autorreativos
ou expansao de células T reguladoras (Tregs), visando suprimir respostas patogénicas [10, 16].

Avangos tecnologicos, como predig¢ao de epitopos via inteligéncia artificial, estao revolucionando
a imunoterapia. Algoritmos de machine learning utilizam bibliotecas protedmicas para identificar
epitopos imunogénicos, otimizando o desenvolvimento de intervengoes precisas [12]. Trabalhos
recentes, como os de Vita et al. [15] na classificacdo de epitopos de MHC-I, Jensen et al. [4] em
MHC-II e Jespersen et al. [5] em epitopos de células B, demonstram como métodos computacionais
refinam a selecao de alvos terapéuticos. Desta forma, a integragao entre imunologia basica e
inovagao translacional posiciona os epitopos como eixos estratégicos para enfrentar desafios globais
em saide, desde pandemias até resisténcia terapéutica em oncologia.

Neste contexto, este artigo tem como objetivo principal propor uma abordagem para a classi-
ficacao de epitopos em trés categorias fundamentais: MHC classe I, MHC classe II e epitopos de
células B, utilizando dados extraidos do Immune Epitope Database (IEDB) e algoritmos de apren-
dizado de maquina. A classificacdo adequada desses epitopos é essencial para o desenvolvimento de
vacinas, imunoterapias e diagnosticos imunoloégicos, uma vez que permite a identificagao de alvos
imunogénicos especificos e a previsao de respostas imunes adaptativas.

2 Metodologia

Os dados utilizados neste estudo foram construidos utilizando os conjuntos de dados de epi-
topos disponiveis no Immune Epitope Database (IEDB) [15], uma das principais fontes de dados
imunologicos, que contém informagdes sobre epitopos de células B, MHC I/1I, além de ligantes de
células T. Apos a obtencao dos dados no IEDB foi realizada uma selecao para garantir a qualidade
e relevancia dos dados.

Primeiramente, as sequéncias de aminoacidos que apareciam tanto nos conjuntos de dados de
MHC quanto nos de células T foram selecionadas, gerando um conjunto tnico de MHC. Esse
passo é importante pois, as células T reconhecem antigenos apenas quando esses antigenos sao
processados e apresentados por moléculas do MHC. Essa relagao é fundamental para a ativagao
das células T e, consequentemente, para a resposta imune adaptativa. Deste modo, ao selecionar
apenas as sequéncias comuns aos dois conjuntos de dados, garantem-se epitopos biologicamente
relevantes, ou seja, que sejam capazes de interagir tanto com o MHC quanto com os receptores das
células T (TCRs).

Em seguida, foram selecionadas apenas as sequéncias tnicas que apareciam tanto no conjunto
de MHC quanto no conjunto de células B. Para evitar um desbalanceamento excessivo dos dados,
apenas 15.000 sequéncias de células B foram incluidas no conjunto final. Resultando em 43.975
amostras, sendo 17.933 de MHC classe I, 11.042 de MHC classe II e 15.000 de células B.

A selegao de sequéncias tnicas é importante porque elimina redundancias nos dados. Essa
redundancia pode ocorrer devido a diferentes fatores, como contextos experimentais variados ou
anotagoes repetidas. Por exemplo, uma mesma sequéncia de aminoacidos pode ser reportada
miltiplas vezes em estudos distintos, com pequenas variagoes nas condigoes experimentais ou nos
métodos de detecgao. Essas duplicagoes podem distorcer a representatividade dos dados e afetar
a qualidade e confiabilidade do conjunto final.

Com o conjunto de dados construido, as sequéncias de aminoécidos foram convertidas em
valores numéricos, utilizando uma variedade de parametros fisico-quimicos e estruturais. Esses
parametros foram escolhidos com base em sua relevincia para a interacao entre epitopos e o sistema
imunolégico, sendo amplamente utilizados na literatura para caracterizar propriedades biologicas
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e funcionais de peptideos. Neste trabalho, combinamos abordagens inspiradas em dois estudos
anteriores: Kozlova et al. [8], que destaca a importancia de parametros como hidrofobicidade e
carga para a classificacdo de epitopos, e Tayebi, Ali e Patterson [14], que utiliza métricas como
entropia de Shannon e similaridade de motivos para analise de sequéncias imunologicas.

No total, 33 parametros foram utilizados, incluindo: indice alifatico, grau de hidropaticidade
(indice GRAVY), ponto isoelétrico, hidrofobicidade média, percentual de aminoécidos carregados
positivamente, percentual de aminoéacidos carregados negativamente, percentual de aminoécidos
sem carga, comprimento da sequéncia, distribuicao de carga, similaridade de motivos, entropia
de Shannon, indice de Simpson e a frequéncia de aminoécidos especificos (A, C, D, E, F, G, H,
LK, L MNP QR,S, T, V, W, Y). Como o comprimento das sequéncias é variavel, alguns
parametros como hidrofobicidade, distribuicao de carga, os percentuais de aminoacidos carregados
positivamente, negativamente e sem carga foram fornecidos diretamente em forma percentual,
garantindo que fossem comparaveis entre sequéncias de diferentes tamanhos. Para os demais
atributos, que nao estavam em forma percentual, foi aplicada a normalizagdo min-max, conforme
a equagao (1).

x — min(x)

(1)

Fnorm = max(x) — min(x)’

Essa normalizagao foi realizada para garantir que todos os parametros estivessem na mesma
escala, evitando que variaveis com magnitudes maiores afetassem os algoritmos. Apo6s a normali-
zagao, o conjunto de dados foi dividido em conjuntos de treinamento e teste utilizando a técnica
de hold-out na proporcao 70/30, com a divisdo sendo estratificada para preservar a distribuicao
das classes em ambos os conjuntos. O conjunto de treinamento (70% dos dados) foi utilizado para
a busca e selecao dos melhores pardmetros para os algoritmos de classificagao por meio da busca
em grade combinada com validagao cruzada de 5-folds.

A busca em grade é uma técnica exaustiva que testa todas as combinagbes possiveis de hi-
perparametros pré-definidos para cada algoritmo, com o objetivo de encontrar a configuracao que
maximiza o desempenho do modelo [1]. Ja a validacdo cruzada (5-folds) divide o conjunto de
treinamento em 5 partes, utilizando 4 partes para treinamento e 1 para validacao, em um processo
iterativo que garante que cada fold seja usado como conjunto de validagao uma vez. Essa técnica é
essencial para evitar overfitting, proporcionando uma estimativa mais robusta do desempenho do
modelo em dados néo vistos [2, 7].

Os algoritmos de aprendizado de méquina selecionados para o experimento foram: O Ran-
dom Forest (RF), baseado em ensemble learning, emprega multiplas arvores de decisdo treinadas
em subconjuntos aleatérios dos dados, promovendo robustez e reduzindo overfitting por meio da
agregagio de predigdes. O K-Nearest Neighbors (KNN) opera sob o principio de similaridade, clas-
sificando instancias com base na proximidade no espago de caracteristicas. O Gradient Boosting
(GB) utiliza uma estratégia iterativa de otimizagao, em que modelos subsequentes sdo ajustados
para minimizar os residuos dos anteriores, resultando em alta capacidade preditiva. O Support
Vector Machine (SVM) busca um hiperplano 6timo em espagos de alta dimensao para separar os
dados. Por fim, o Multilayer Perceptron (MLP), uma arquitetura de rede neural artificial, utiliza
multiplas camadas de neurdnios interconectados com fungoes de ativagao nao lineares possibilitando
a captura de padroes complexos [2]. Para a avaliacao dos modelos, foram utilizadas métricas como
acuracia (ACC), precisao (Pre), sensibilidade (Se), especificidade (Sp), Fi-score (F1) e area sob a
curva ROC (AUC). Considerando que se trata de um problema de classificagdo multiclasse, na qual
h& mais de duas categorias a serem previstas, foram calculadas as versées macro e micro dessas
métricas para garantir uma avaliagao mais abrangente do desempenho dos modelos. A abordagem
macro calcula a métrica para cada classe individualmente e tira a média simples dos resultados.
Ja a abordagem micro agrega os acertos e erros de todas as classes, calculando a métrica como se
fosse um problema tnico.
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3 Resultados

A Tabela 1 apresenta as métricas tanto macro quanto micro obtidas por cada método. Como
os dados sao desbalanceados, a métrica de interesse principal é a métrica macro, que trata todas
as classes de forma igualitaria, garantindo que classes minoritarias nao sejam negligenciadas na
avaliagao. O RF destacou-se como o modelo com melhor desempenho geral, com uma acurécia de
84,32% e um Fi-score macro de 0,8276. Além disso, o RF obteve a maior AUC macro de 0,9477,
revelando uma excelente capacidade de distinguir entre as classes. O GB e o MLP apresentaram
resultados proximos, com acurécias de 83,82% e 83,43% respectivamente, e Fi-scores macro de
0,8216 e 0,8180. Esses modelos também demonstraram alta especificidade macro de 92,19% para
o0 GB e 92,09% para o MLP, sugerindo uma boa capacidade de evitar os falsos positivos.

Por outro lado, o KNN e o SVM tiveram desempenhos inferiores com acuracias de 76,93% e
66,60%, respectivamente. A AUC macro do SVM de 0,8345 foi significativamente menor que a dos
outros modelos, indicando dificuldades na separagao das classes.

Tabela 1: Métricas de Desempenho dos Modelos.
Se Sp Pre Fi-score AUC

Modelo ACC

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

RF  0,8432 0,8317 0,8432 0,9247 0,9216 0,8268 0,8432 0,8276 0,8432 0,9477 0,9585
KNN  0,7693 0,7461 0,7693 0,8852 0,8847 0,7469 0,7693 0,7460 0,7693 0,9078 0,9208
SVM  0,6660 0,6502 0,6660 0,8400 0,8330 0,6487 0,6660 0,6442 0,6660 0,8345 0,7434
GB  0,8382 0,8241 0,8382 0,9219 0,9191 0,8204 0,8382 0,8216 0,8382 0,9448 0,9562
MLP  0,8343 0,8232 0,8343 0,9209 0,9172 0,8180 0,8343 0,8180 0,8343 0,9409 0,9541

A Tabela 2 por sua vez, apresenta métricas como sensibilidade, especificidade, precisao e Fi-
score para as categorias de epitopos: Células B (C1), MHCI (C2) e MHC II (C3). O RF novamente
se destacou, especialmente na classificagao de MHC I, com sensibilidade de 95,65%, especificidade
de 96,89%, precisao de 95,49% e F1-score de 0,9557. Esses valores indicam que o RF é altamente
eficaz na identificagao de MHC 1. Para MHC II, o RF também apresentou o melhor desempenho
entre os modelos, com F1-score de 0,7457, embora essa métrica seja inferior a obtida para MHC I,
indicando maior complexidade nessa classe.

Tabela 2: Desempenho por Classe de Cada Modelo.

Modelo Classe Se Sp Pre Fq ‘Modelo Classe Se Sp Pre Fy
C1 0,7438 0,9158 0,8231 10,7814 C1 0,7522 0,9024 0,8022 0,7764

RF C2 0,9565 0,9689 0,9549 0,9557 | GB C2 0,9556 0,9685 0,9543 0,9550
C3 0,7948 0,8895 0,7023 0,7457 C3 0,7644 0,8949 0,7046 0,7333
C1 0,6699 0,8519 0,7042 0,6866 C1 0,7213 0,9163 0,8194 0,7672

KNN C2 0,9370 0,9126 0,8808 0,9080 | MLP C2 0,9543 0,9699 0,9563 0,9553
C3 0,6313 0,8913 0,6558 0,6433 C3 0,7939 10,8764 0,6782 10,7315
C1 0,4704 0,8023 0,5561 0,5096 C1: Células B

SVM C2 0,8578 0,9503 0,9225 0,8890 | Rotulos C2: MHC I
C3 0,6223 0,7675 0,4675 0,5339 C3: MHC II

O GB e 0o MLP tiveram desempenhos semelhantes ao RF, com F1-scores de 0,9550 e 0,9553 para
MHC I, respectivamente. No entanto, para MHC II, o GB obteve um F1-score de 0,7333, enquanto
o MLP alcangou 0,7315, ambos ligeiramente inferiores ao RF. Para Células B, o RF também se
saiu melhor, com Fi-score de 0,7814, comparado a 0,7764 do GB e 0,7672 do MLP. J4 0o KNN e o
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SVM apresentaram dificuldades, especialmente na classificagao de MHC II, com F1-score de 0,6433
e 0,5339, respectivamente. Para Células B, o SVM teve o pior desempenho (Fi-score de 0,5096),
indicando baixa generalizacao. Na Figura 1 sdo apresentados a matriz de confusio e a curva ROC
para o RF, onde pode-se observar o desempenho satisfatorio na classificacao da classe MHC 1.
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(a) Matriz de Confuséo. (b) Curva ROC e AUC para cada classe.

Figura 1: Resultados do Classificador Random Forest. Fonte: dos autores.

4 Discussoes

Esses resultados tem implicagoes importantes para o desenvolvimento de vacinas de nova gera-
¢ao. A capacidade de classificar epitopos com alta precisao e rapidez pode acelerar o processo de
identificagao de candidatos a vacinas, reduzindo tempo e custos. Comparado a métodos padrao
disponiveis no IEDB, como o NetMHC e o BepiPred, que utilizam ferramentas separadas para clas-
sificagao de epitopos, o uso de métodos de machine learning, como o RF, pode reduzir o acimulo
de erros associados a cada ferramenta individual. O NetMHC, por exemplo, utiliza redes neurais
artificiais para prever a ligacao de peptideos ao MHC, enquanto o BepiPred emprega modelos de
Markov para prever epitopos lineares de células B. Embora eficazes, essas ferramentas realizam
apenas classificacoes independentes, enquanto a técnica aqui apresentada realiza a classificagao do
epitopo tanto em relagao a peptideos ao MHC quanto em relagao a células B e, por isso, nao possui
erros cumulativos. E importante salientar que o classificador proposto analisa o epitopo, nao a
cadeia completa como seus predecessores.

Embora este trabalho nao apresente uma ferramenta que examine profundamente a sequéncia
em busca de epitopos e depois os classifique, é importante ressaltar que isso pode ser feito de
maneira relativamente simples. Uma abordagem vidvel é o uso de janelas deslizantes, em que a
sequéncia de proteinas é dividida em segmentos de tamanho fixo e cada segmento é avaliado como
epitopo ou ndo. Apds a identificagio, os epitopos podem ser classificados em categorias (células B,
MHC I ou MHC 1I) utilizando os métodos de aprendizado de maquina propostos neste trabalho
como o RF, que demonstrou excelente desempenho na classificagao de epitopos neste estudo.

A utilizagao de parametros fisico-quimicos foi fundamental para o sucesso deste trabalho. Esses
pardmetros capturam informagoes importantes sobre as propriedades e estrutura das sequéncias de
aminoacidos como hidrofobicidade, carga, estabilidade térmica e frequéncia de aminoécidos, que
sdo criticas para a interacao dos epitopos com o sistema imunolégico. A inclusdo desses parametros
permitiu que os modelos aprendessem padroes complexos e nao lineares nos dados, o que contribuiu
para a alta precisao dos resultados. Além disso, a normalizacao desses parametros em porcentagem
garantiu que sequéncias de diferentes comprimentos pudessem ser comparadas de forma equitativa,
sendo essencial para a classificagao de epitopos.
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A interpretabilidade dos parametros fisico-quimicos é uma vantagem significativa deste traba-
lho. Diferentemente de métodos baseados em redes neurais profundas, que muitas vezes funcionam
como “caixas pretas”, os parametros fisico-quimicos sdo facilmente interpretaveis e podem fornecer
informacoes valiosas sobre as caracteristicas dos epitopos. Por exemplo, um alto indice alifatico
pode indicar maior estabilidade térmica, enquanto um alto grau de hidrofobicidade pode sugerir
uma tendéncia a interagir com ambientes lipidicos. Essa interpretabilidade permite que pesqui-
sadores e desenvolvedores de vacinas entendam melhor as razoes por tras das classificagoes feitas
pelos modelos, o que pode auxiliar no desenvolvimento de vacinas e terapias imunologicas.

A importancia dos pardmetros fisico-quimicos é ainda mais evidente quando consideramos que
cada sequéncia de aminoécidos pode ter um comprimento diferente, o que adiciona uma camada
adicional de complexidade & classificagao. Sequéncias mais longas podem conter mais informagoes,
mas também podem introduzir ruido ou redundéncia, enquanto sequéncias mais curtas podem
nédo capturar todas as caracteristicas relevantes. A normalizacdo dos pardmetros em porcentagem
permite que sequéncias de diferentes comprimentos sejam comparadas de forma justa, garantindo
que o modelo nao seja enviesado por diferencas no comprimento das sequéncias.

5 Consideracgoes Finais

Este trabalho propos a classificagao de epitopos em trés categorias: MHC classe I, MHC classe
IT e epitopos de células B, utilizando dados extraidos do Immune Epitope Database (IEDB) e
algoritmos de aprendizado de méaquina. A classificagdo adequada desses epitopos é crucial para o
desenvolvimento de vacinas, imunoterapias e diagnosticos imunologicos, pois permite a identificagao
de alvos imunogénicos especificos e a previsao de respostas imunes adaptativas.

Os resultados demonstraram que o modelo de Random Forest (RF) destacou-se como o mais
eficaz, com uma acuracia de 84,32% e um Fi-score macro de 0,8276, superando outros algorit-
mos como Gradient Boosting (GB), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN)
e Support Vector Machine (SVM). O RF mostrou-se particularmente eficiente na classificagido de
epitopos de MHC I, com um Fi-score de 0,9557, e também obteve bons resultados para MHC II e
epitopos de células B, embora com menor desempenho em comparagao ao MHC 1. Esses resultados
indicam que o RF é uma ferramenta eficiente para a classificacao de epitopos, especialmente em
cenérios onde a precisao e a capacidade de generalizagao sao essenciais.

A utilizagdo de parametros fisico-quimicos e a normalizagdo desses parametros corroboraram
para os resultados, permitindo que os modelos aprendessem padroes complexos e nao lineares nos
dados, além de permitir que sequéncias de diferentes comprimentos pudessem ser comparadas de
forma equitativa. Além disso, a abordagem proposta pode ser facilmente adaptada para incluir
técnicas como janelas deslizantes, que permitem a identificacao de epitopos em sequéncias de
proteinas mais longas, seguida de sua classificagao em categorias especificas. Futuros trabalhos
podem expandir o método para identificar epitopos em sequéncias mais longas.
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