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Resumo. A doença de Alzheimer é uma condição neurodegenerativa comum, afetando 8,5% da
população mundial com mais de 60 anos, e a detecção precoce é crucial para a melhoria da qualidade
de vida e a não progressão da doença. Entretanto, seu diagnóstico precoce depende de métodos de
diagnóstico avançados, muitas vezes indisponível à maioria da população. Assim, esse estudo propôs
a classificação de pacientes com Alzheimer e indivíduos saudáveis utilizando dados de escrita à mão
do conjunto DARWIN, que inclui 25 tarefas categorizadas em memória/ditado, gráficas e cópia.
Foram extraídos 18 atributos relacionados a tempo, pressão, velocidade e tremor, entre outros,
para cada tarefa. Onze algoritmos de aprendizado de máquina, incluindo Random Forest, Gradient
Boosting e Decision Tree, foram aplicados individualmente e combinados por ensemble (média das
probabilidades e votação por maioria). Modelos baseados em árvores destacaram-se, com Random
Forest alcançando acurácia de 0,8491 e AUC de 0,9095. Os métodos empregados constataram que
tarefas gráficas e de cópia mostraram-se mais discriminativas, enquanto tarefas de memória/ditado
foram mais desafiadoras. A combinação por ensemble melhorou a robustez do sistema.

Palavras-chave. Classificadores, Machine Learning, Algoritmos Baseados em Árvore, Diagnóstico
Assistido por Máquina, Doença de Alzheimer, Conjunto de Dados DARWIN.

1 Introdução
A Doença de Alzheimer (DA), primeiramente descrita pelo médico alemão Alois Alzheimer em

1906, é uma condição neurodegenerativa caracterizada por um quadro clínico variável de progressiva
perda cognitiva, especialmente da memória [3]. A doença, inicialmente, afeta o lobo temporal,
responsável pela formação de novas memórias, e, em seus estágios finais, compromete todo o
encéfalo. As principais características neuropatológicas incluem a presença de placas amiloides,
descritas no trabalho original de Alzheimer, e atrofia cortical [9]. Atualmente, a DA é a causa mais
comum de demência, considerada a doença degenerativa mais prevalente, cara e letal. Estima-se
que sua prevalência triplique até 2050, representando um desafio significativo para os sistemas de
saúde globais [14].

Diante desse cenário, diversas abordagens têm sido exploradas para o diagnóstico precoce, sendo
que um dos maiores desafios é a diferenciação entre o declínio cognitivo (DC) normal associado
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ao envelhecimento e os primeiros estágios da doença [5]. Enquanto o DC normal não responde às
terapias medicamentosas, a DA é progressiva e irreversível, tornando o diagnóstico precoce crucial
para o tratamento adequado e a implementação de intervenções que retardam a progressão da
doença [6]. Nesse contexto, diversas abordagens têm sido exploradas para o diagnóstico precoce
da DA, incluindo a associação com perda olfatória [13], síndrome metabólica [17] e marcadores
plasmáticos [2], além de métodos avançados de imagem [16]. Entretanto, a evolução dos métodos
computacionais combinados com aprendizado de máquina têm aberto novas possibilidades para
a detecção precoce da doença, como a análise genética [10], a análise de neuroimagem [1] e a
identificação de biomarcadores [15]. Entretanto, devido ao custo, o acesso de grande parte da
população a esses métodos de diagnóstico avançados é limitado.

Nesse cenário, o uso de dados clínicos não convencionais, como a escrita à mão, emerge como
uma abordagem promissora, pois a escrita é uma atividade complexa que envolve múltiplas funções
cognitivas, motoras e perceptivas, sendo influenciada por áreas cerebrais afetadas precocemente
pela DA, como o lobo temporal e o córtex pré-frontal. Estudos recentes têm demonstrado que
alterações na escrita, como mudanças na pressão, velocidade, tamanho das letras e organização
espacial, podem ser indicativos de comprometimento cognitivo [8].Essas alterações, por sua vez,
podem ser quantificadas e analisadas por meio de técnicas de processamento de sinais e aprendizado
de máquina, oferecendo uma ferramenta não invasiva, de baixo custo e amplamente acessível para o
diagnóstico precoce da DA. Além disso, a escrita é uma atividade cotidiana que pode ser facilmente
monitorada ao longo do tempo, permitindo a identificação de mudanças sutis que podem preceder
o aparecimento de sintomas clínicos mais evidentes [8]. A análise computacional da escrita à mão,
portanto, não apenas complementa as abordagens diagnósticas tradicionais, mas também oferece
uma abordagem para a detecção precoce e o monitoramento contínuo da doença.

Este trabalho propõe a utilização de dados de escrita à mão, processados por meio de técnicas
de aprendizado de máquina, para a classificação de pacientes com DA e indivíduos saudáveis.

2 Metodologia
Este estudo utilizou o conjunto de dados DARWIN (Diagnosis AlzheimeR WIth haNdwriting),

que utiliza características de dados de escrita à mão para classificar pacientes entre aqueles com
diagnóstico de DA e aqueles sem a doença. O DARWIN consiste em atributos derivados de 25
tarefas de escrita, categorizadas em gráficas, de cópia e de memória/ditado, conforme descrito
no protocolo de aquisição de Cilia et al. [4]. O conjunto de dados inclui informações de 174
participantes, sendo 89 pacientes com DA e 85 indivíduos saudáveis. Para cada participante, foram
extraídos 18 atributos relacionados ao tempo, pressão, velocidade, aceleração, tremor e dispersão,
entre outros, para cada uma das 25 tarefas, conforme listadas na Tabela 1.

Para capturar diferentes aspectos cognitivos e motores, as tarefas foram agrupadas em três
categorias principais: tarefas de memória/ditado (M), tarefas gráficas (G) e tarefas de cópia (C).
Cada conjunto foi tratado individualmente, resultando em três matrizes de dados distintas. Por
exemplo, o conjunto de tarefas de cópia, composto por 14 tarefas, gerou uma matriz com 174
linhas (uma para cada participante) e 252 colunas (14 tarefas × 18 atributos por tarefa). O mesmo
procedimento foi aplicado aos conjuntos de memória/ditado e gráfico, resultando em matrizes com
dimensões proporcionais ao número de tarefas em cada categoria.

Para a classificação, foram empregados 11 algoritmos de aprendizado de máquina, abrangendo
diferentes paradigmas: métodos de boosting (Ada Boosting-AB) [7], modelos baseados em distân-
cia (K-Nearest Neighbors–KNN)[12], modelos Autoexpansíveis baseados em Teoria da Ressonância
Adaptativa (ART Fuzzy–AF e ART Euclidiana–AE) [11], redes neurais (Multilayer Perceptron–
MLP), modelos lineares ou de margem (Support Vector Machine–SVM e Regressão Logística–RL)
e modelos baseados em árvores (Random Forest–RF, Gradient Boosting–GB, Decision Tree–DT e
Extra Trees–ET) [12]. Cada algoritmo foi avaliado seguindo uma metodologia comum: os dados
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Tabela 1: Descrição das tarefas e Categorias.
# Descrição da Tarefa Cat.
1 Desenho da assinatura M
2 Unir dois pontos com uma linha horizontal, continuamente por quatro vezes G
3 Unir dois pontos com uma linha vertical, continuamente por quatro vezes G
4 Retraçar um círculo (6 cm de diâmetro) continuamente por quatro vezes G
5 Retraçar um círculo (3 cm de diâmetro) continuamente por quatro vezes G
6 Copiar as letras “l”, “m” e “p” C
7 Copiar as letras nas linhas adjacentes C
8 Escrever cursivamente uma sequência de quatro letras “l” minúsculas, em um único movimento C
9 Escrever cursivamente uma sequência de quatro bigramas “le” minúsculos, em um único movi-

mento
C

10 Copiar a palavra “foglio” C
11 Copiar a palavra “foglio” acima de uma linha C
12 Copiar a palavra “mamma” C
13 Copiar a palavra “mamma” acima de uma linha C
14 Memorizar as palavras “telefono”, “cane”, e “negozio” e reescrevê-las M
15 Copiar a palavra “bottiglia” de trás para frente C
16 Copiar a palavra “casa” de trás para frente C
17 Copiar seis palavras (regulares, irregulares, não palavras) nas caixas apropriadas C
18 Escrever o nome do objeto mostrado em uma imagem (uma cadeira) M
19 Copiar os campos de uma ordem postal C
20 Escrever uma frase simples sob ditado M
21 Retraçar uma forma complexa G
22 Copiar um número de telefone C
23 Escrever um número de telefone sob ditado M
24 Desenhar um relógio, com todas as horas e posicionar os ponteiros às 11:05 (Clock Drawing Test) G
25 Copiar um parágrafo C

foram divididos em conjuntos de treinamento (70%) e teste (30%), mantendo a proporção de paci-
entes com DA e indivíduos saudáveis em ambos os conjuntos, garantindo a representatividade, com
otimização de hiperparâmetros realizada por meio de busca em grade e validação cruzada de 5-folds
no conjunto de treinamento. A busca em grade permitiu testar combinações de hiperparâmetros
para cada modelo, como o número de árvores e a profundidade máxima para RF, ou o número de
vizinhos para KNN. Após a otimização, os modelos foram avaliados no conjunto de teste.

Para avaliar o desempenho dos modelos, foram utilizadas as métricas: acurácia (ACC) que
mede a proporção de classificações corretas em relação ao total de amostras; sensibilidade (Se)
e especificidade (Sp), avaliam a capacidade do modelo de identificar corretamente pacientes com
DA e indivíduos saudáveis, respectivamente; precisão (Pre) reflete a proporção de verdadeiros po-
sitivos entre todas as previsões positivas; o F1-score combina precisão e sensibilidade em uma
única métrica balanceada; e AUC-ROC (Area Under the Curve - Receiver Operating Characte-
ristic), abreviadamente AUC, avalia a capacidade do modelo de distinguir entre as duas classes,
independentemente do limiar de classificação.

Para cada um dos 11 modelos, após a avaliação em cada um dos três conjuntos de tarefas, as
saídas foram combinadas utilizando duas estratégias de ensemble: votação por maioria e média das
probabilidades. Na votação por maioria, a classe final foi determinada pela classe mais frequente
entre as previsões das diferentes configurações do mesmo modelo. Já na média das probabilidades,
a probabilidade média de pertencer à classe “DA” foi calculada a partir das probabilidades geradas
por cada configuração do modelo, e a classe final foi determinada com base nessa média. Essa
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abordagem permitiu explorar a diversidade das parametrizações de um mesmo modelo, reduzindo o
viés individual e melhorando a robustez do sistema de classificação. Os resultados foram analisados
tanto para os modelos individuais quanto para as combinações por ensemble, permitindo uma
comparação abrangente do desempenho de cada abordagem.

3 Resultados

A Tabela 2 apresenta os resultados individuais dos 11 modelos para cada um dos três conjuntos
de tarefas: memória/ditado, gráficas e cópia. Ao se analisar o problema abordado, precisa-se focar
não na acurácia, mas nas métricas sensibilidade e AUC-ROC. Para as tarefas de memória/ditado e
cópia, pode-se perceber que as redes neurais autoexpansíveis AF e AE obtiveram o mesmo desem-
penho do algoritmo RF, com Acurácia de 66,04% e uma AUC-ROC de 0,8664, uma sensibilidade
de 25% o que leva a classificar 75% dos pacientes com DA como saudáveis. Entretanto, esses mo-
delos conseguem identificar corretamente os pacientes saudáveis devido ao alto valor de precisão
e especificidade (100%). Com uma sensibilidade tão baixa esse modelo não é adequado para a
identificação de pacientes com DA, pois pode levar a um atraso no tratamento. Não conseguindo
capturar as diferenças entre os pacientes saudáveis e com DA, isso pode ser observado pelo seu
MCC de 0,3928 e F1-score de apenas 0,4000, o mesmo acontecendo com as tarefas gráficas para
a rede autoexpansível AF e os algoritmos KNN e RF. Entretanto, a rede autoexpansível AE, ao
classificar as tarefas gráficas, conseguiu uma sensibilidade de 70,83%, sendo o método mais sensível
para esse tipo de tarefa e identificando 65,57% dos pacientes saudáveis, o que leva a um F1-score
mais balanceado, obtendo um score de 0,6667 e uma AUC de 0,7227.

Em todas as tarefas, os classificadores AB, MLP, SVM, RL, GB, DT e ET obtiveram uma
acurácia de 73,88% e precisão de 85,71%, com sensibilidade de 50% e especificidade de 93,10%,
com uma pontuação de F1-score de 0,6316 e AUC de 0,7155, mostrando consistência no desempenho
desses classificadores. O mesmo acontecendo para o KNN em relação à tarefa de memória/ditado.

Ao se observar os resultados da sensibilidade dos diversos modelos, nota-se que eles tiveram
dificuldade em identificar pacientes com DA, possivelmente devido à complexidade das tarefas de
memória/ditado que avaliam habilidades cognitivas mais afetadas pela doença.

Contudo, a situação de equilíbrio relativo se rompe quando analisamos a Tabela 3, que apre-
senta os resultados combinados utilizando as estratégias de ensemble: média das probabilidades e
votação por maioria. Tais estratégias permitiram explorar a diversidade dos modelos, melhorando
a robustez e a generalização do sistema de classificação. O RF combinado por média das probabi-
lidades obteve a maior AUC (0,9095), com acurácia de 84,91%, sensibilidade de 84,62%, um MCC
de 0,7077 e F1-score de 0,8462, o que o destaca como o modelo mais eficaz. A votação por mai-
oria também mostrou resultados consistentes, com acurácia de 81,13% e F1-score de 0,8148 para
o Random Forest. Entretanto, as redes neurais Autoexpansíveis AF e AE, que haviam tido um
desempenho comparável ao classificador RF, em alguns casos superando-o, não conseguiram acom-
panhar seu desempenho, focando apenas em identificar pacientes saudáveis, com especificidade de
100% e 88,24%, com AUC de 0,8218 e 0,8118, respectivamente.

O GB também apresentou desempenho superior quando combinado por média das probabilida-
des, com acurácia de 0,8302 e F1-score de 0,8163. Esses resultados reforçam a eficácia dos modelos
baseados em árvores, que se beneficiaram da combinação de múltiplas previsões para melhorar a
precisão e a robustez. Algoritmos mais simples, como DT, também se destacaram na combinação
por ensemble tendo resultados consistentes para as duas técnicas. O DT alcançou uma acurácia
de 83,02%, um F1-score de 0,8235 e um MCC de 0,6652, demonstrando que mesmo modelos mais
simples podem ser altamente eficazes quando combinados com outras abordagens.

Por outro lado, modelos como KNN e SVM tiveram desempenho inferior em comparação com
os modelos baseados em árvores. O KNN combinado por média das probabilidades obteve uma
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Tabela 2: Resultados dos onze métodos de classificação para diferentes tipos de tarefas.
AB KNN AF AE MLP SVM RL GB RF DT ET

M
em

ór
ia

/D
it

ad
o ACC 0,7358 0,7358 0,6604 0,6604 0,7358 0,7358 0,7358 0,7358 0,6604 0,7358 0,7358

Pre 0,8571 0,9167 1,0000 1,0000 0,8571 0,8571 0,8571 0,8571 1,0000 0,8571 0,8571
Se 0,5000 0,4583 0,2500 0,2500 0,5000 0,5000 0,5000 0,5000 0,2500 0,5000 0,5000
Sp 0,9310 0,9655 1,0000 1,0000 0,9310 0,9310 0,9310 0,9310 1,0000 0,9310 0,9310
F1 0,6316 0,6111 0,4000 0,4000 0,6316 0,6316 0,6316 0,6316 0,4000 0,6316 0,6316
MCC 0,4867 0,5041 0,3928 0,3928 0,4867 0,4867 0,4867 0,4867 0,3928 0,4867 0,4867
AUC 0,7155 0,8563 0,8664 0,8664 0,7155 0,7155 0,7155 0,7155 0,8664 0,7155 0,7155

G
rá

fic
a

ACC 0,7358 0,7170 0,6604 0,6792 0,7358 0,7358 0,7358 0,7358 0,6604 0,7358 0,7358
Pre 0,8571 0,7143 1,0000 0,6296 0,8571 0,8571 0,8571 0,8571 1,0000 0,8571 0,8571
Se 0,5000 0,6250 0,2500 0,7083 0,5000 0,5000 0,5000 0,5000 0,2500 0,5000 0,5000
Sp 0,9310 0,7931 1,0000 0,6552 0,9310 0,9310 0,9310 0,9310 1,0000 0,9310 0,9310
F1 0,6316 0,6667 0,4000 0,6667 0,6316 0,6316 0,6316 0,6316 0,4000 0,6316 0,6316
MCC 0,4867 0,4255 0,3928 0,3619 0,4867 0,4867 0,4867 0,4867 0,3928 0,4867 0,4867
AUC 0,7155 0,7759 0,8664 0,7227 0,7155 0,7155 0,7155 0,7155 0,8664 0,7155 0,7155

C
óp

ia

ACC 0,7358 0,6604 0,6604 0,7358 0,7358 0,7358 0,7358 0,7358 0,6604 0,7358 0,7358
Pre 0,8571 1,0000 1,0000 0,8571 0,8571 0,8571 0,8571 0,8571 1,0000 0,8571 0,8571
Se 0,5000 0,2500 0,2500 0,5000 0,5000 0,5000 0,5000 0,5000 0,2500 0,5000 0,5000
Sp 0,9310 1,0000 1,0000 0,9310 0,9310 0,9310 0,9310 0,9310 1,0000 0,9310 0,9310
F1 0,6316 0,4000 0,4000 0,6316 0,6316 0,6316 0,6316 0,6316 0,4000 0,6316 0,6316
MCC 0,4867 0,3928 0,3928 0,4867 0,4867 0,4867 0,4867 0,4867 0,3928 0,4867 0,4867
AUC 0,7155 0,8664 0,8664 0,7155 0,7155 0,7155 0,7155 0,7155 0,8664 0,7155 0,7155

acurácia de 71,70% e uma AUC de 0,8908, enquanto o SVM alcançou uma acurácia de 77,36% e
uma AUC de 0,8865. Esses resultados sugerem que, embora esses modelos obtiveram desempenho
satisfatório em termos de AUC, sua capacidade de classificação foi inferior à dos modelos baseados
em árvores. Entretanto, quase todos os classificadores obtiveram resultados melhores utilizando a
técnica de combinação por ensemble.

4 Discussão

Os resultados deste estudo destacam a eficácia de modelos baseados em árvores, como RF, GB
e DT, na classificação de pacientes com DA utilizando dados de escrita à mão. Esses modelos
compartilham a capacidade de capturar relações não lineares e interações complexas entre as
características, sendo eficazes para dados que envolvam múltiplos atributos derivados de tarefas de
escrita. Além disso, a robustez desses modelos a ruídos e dados desbalanceados contribuiu para
seu desempenho superior.

A importância das tarefas individuais no diagnóstico da DA também foi evidenciada pelos
resultados. Tarefas de memória/ditado, que avaliam a capacidade de recordação e processamento de
informações, demonstraram ser mais desafiadoras para os modelos, refletindo os déficits cognitivos
característicos da doença. Por outro lado, tarefas gráficas e de cópia, que avaliam habilidades
motoras finas e coordenação, foram mais discriminativas, sugerindo que alterações motoras podem
ser um indicador confiável da DA.

A combinação dos resultados por ensemble, utilizando média das probabilidades e votação por
maioria, demonstrou ser uma estratégia interessante para melhorar a robustez e a generalização
dos modelos. A média das probabilidades foi particularmente útil para suavizar as previsões
individuais, enquanto a votação por maioria garantiu decisões mais consistentes.
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Tabela 3: Resultados das métricas para diferentes métodos de classificação.
Modelo Método ACC Pre Se Sp F1 MCC AUC

AB Média das Probabilidades 0,7736 0,7500 0,7500 0,7931 0,7500 0,5431 0,8908
Votação por Maioria 0,7547 0,7200 0,7500 0,7586 0,7347 0,5072 -

KNN Média das Probabilidades 0,7170 1,0000 0,3750 1,0000 0,5455 0,4972 0,8908
Votação por Maioria 0,7170 1,0000 0,3750 1,0000 0,5455 0,4972 -

AF Média das Probabilidades 0,7547 1,0000 0,4583 1,0000 0,6286 0,5626 0,8218
Votação por Maioria 0,7547 1,0000 0,4583 1,0000 0,6286 0,5626 -

AE Média das Probabilidades 0,7925 0,8824 0,6250 0,9310 0,7317 0,5930 0,8118
Votação por Maioria 0,7736 0,8750 0,5833 0,9310 0,7000 0,5577 -

MLP Média das Probabilidades 0,7736 0,7143 0,8333 0,7241 0,7692 0,5559 0,8405
Votação por Maioria 0,7736 0,7143 0,8333 0,7241 0,7692 0,5559 -

SVM Média das Probabilidades 0,7736 0,7500 0,7500 0,7931 0,7500 0,5431 0,8865
Votação por Maioria 0,7736 0,7308 0,7917 0,7586 0,7600 0,5479 -

RL Média das Probabilidades 0,7547 0,7200 0,7500 0,7586 0,7347 0,5072 0,8578
Votação por Maioria 0,7736 0,7308 0,7917 0,7586 0,7600 0,5479 -

RF Média das Probabilidades 0,8491 0,7857 0,9167 0,7931 0,8462 0,7077 0,9095
Votação por Maioria 0,8113 0,7333 0,9167 0,7241 0,8148 0,6436 -

GB Média das Probabilidades 0,8302 0,8000 0,8333 0,8276 0,8163 0,6590 0,8951
Votação por Maioria 0,8113 0,7917 0,7917 0,8276 0,7917 0,6193 -

DT Média das Probabilidades 0,8302 0,7778 0,8750 0,7931 0,8235 0,6652 0,8513
Votação por Maioria 0,8302 0,7778 0,8750 0,7931 0,8235 0,6652 -

ET Média das Probabilidades 0,7925 0,7241 0,8750 0,7241 0,7925 0,5991 0,8973
Votação por Maioria 0,8113 0,8182 0,7500 0,8621 0,7826 0,6183 -

Valores em negrito indicam os melhores resultados para cada métrica.

5 Considerações Finais
Este trabalho teve como objetivo classificar pacientes entre aqueles com diagnóstico de DA e in-

divíduos saudáveis, utilizando dados de escrita à mão extraídos do conjunto de dados DARWIN. A
metodologia envolveu a divisão das tarefas em três categorias principais (memória/ditado, gráficas
e cópia), a aplicação de 11 algoritmos de aprendizado de máquina e a combinação dos resultados
por meio de estratégias de ensemble, como média das probabilidades e votação por maioria. Os
resultados demonstraram que modelos baseados em árvores, como Random Forest, Gradient Boos-
ting e Decision Tree, foram os mais eficazes, destacando-se pela alta acurácia e AUC. Além disso,
a combinação dos modelos por ensemble permitiu melhorar a robustez e a generalização do sistema
de classificação.

Os resultados também evidenciaram a importância de incluir múltiplas tarefas no protocolo
de avaliação, uma vez que diferentes categorias de tarefas capturam aspectos distintos da doença.
Tarefas de memória/ditado, que avaliam habilidades cognitivas, mostraram-se mais desafiadoras
para os modelos, refletindo os déficits característicos de DA. Por outro lado, tarefas gráficas e de
cópia, que avaliam habilidades motoras finas, foram mais discriminativas, sugerindo que alterações
motoras podem ser um indicador precoce e confiável da doença.
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