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Resumo. Este trabalho tem como objetivo formular e resolver o problema inverso de identificação
de propriedades térmicas utilizando Inferência Bayesiana via STAN. Foram consideradas duas ver-
sões do problema direto de transferência de calor: uma homogênea e uma não homogênea. A versão
homogênea foi resolvida por meio do Método de Separação de Variáveis, enquanto a não homogê-
nea foi abordada com o Método de Diferenças Finitas (MDF) em sua formulação explícita. Para a
solução dos respectivos problemas inversos de identificação de propriedades térmicas, empregou-se
o Método de Monte Carlo Hamiltoniano (HMC), implementado utilizando a ferramenta estatística
STAN, permitindo assim a estimação das distribuições de probabilidade a posteriori dos parâmetros
de interesse.
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1 Introdução
A determinação de propriedades físicas de materiais, que consiste na sua caracterização ma-

croscópica, tem sido o objeto de estudo de grande parte da comunidade científica nos últimos anos.
Sua importância emerge da necessidade de diversos setores industriais em obter materiais com
propriedades físicas e químicas bem definidas e com pequenas incertezas. Pode-se destacar, por
exemplo, a indústria de desenvolvimento de materiais não-homogêneos, como a de nanocompósi-
tos, que lida com o problema de caracterização das propriedades físicas de seus produtos, caso a
caso, com o intuito de garantir sua eficiência em uso, visto que, existem inúmeras possibilidades
de composição das fases e arranjo de cada uma [3]. Dessa forma, desenvolver materiais novos de
alto desempenho é de grande importância na evolução da indústria moderna, onde tais avanços
são utilizados em grande parte dos produtos de uso cotidiano com alto impacto social. Portanto,
estimar propriedades materiais tornou-se uma prioridade para a indústria [2].

Destacada a importância da estimação de propriedades físicas materiais, o presente trabalho
propõe a aplicação da inferência Bayesiana para a formulação e solução do problema inverso de
identificação de propriedades térmicas da placa termicamente fina. Devido à sua grande aplicabi-
lidade e eficiência, os métodos Bayesianos estão, cada vez mais, sendo utilizados pela comunidade
científica. Essa abordagem permite incorporar informações a priori sobre os parâmetros de inte-
resse ao processo de estimação, tratar explicitamente incertezas e assimilar novas informações em
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contextos adaptativos. Nesta abordagem, as grandezas do problema são modeladas como variáveis
aleatórias e, ao final do processo, obtém-se uma aproximação da Função Densidade de Probabili-
dade (PDF) a posteriori dos parâmetros de interesse, da qual é possível inferir várias propriedades
estatísticas, tais como média, desvio padrão e intervalos de credibilidade [1, 4, 8]

2 Problema Direto
A determinação da distribuição de temperatura em corpos sólidos pode ser realizada mediante

a resolução da equação da condução de calor, submetida a um conjunto específico de condições de
contorno e iniciais. Neste trabalho, considera-se uma placa plana de espessura L, cuja temperatura
T (x, t) é função do tempo t [s] e varia exclusivamente ao longo da coordenada unidimensional x.
Inicialmente, a placa apresenta uma distribuição de temperatura uniforme T0, com uma taxa de
geração interna de energia uniforme g. A superfície localizada em x = 0 encontra-se termicamente
isolada, enquanto a superfície em x = L está sujeita à transferência de calor por convecção com
um meio circundante, caracterizado por um coeficiente de transferência de calor h. A formulação
matemática para esse problema de transferência de calor é dada por

w
∂T (x, t)

∂t
= k

∂2T (x, t)

∂x2
+ g, 0 < x < L, t > 0 (1)

∂T (x, t)

∂x

∣∣∣∣
x=0

= 0, t > 0 (2)

−k
∂T (x, t)

∂x

∣∣∣∣
x=L

+ hT (L, t) = hT0, t > 0 (3)

T (x, 0) = T0, 0 < x < L (4)

onde ρ é a massa específica do material [kg/m3], cp é o calor específico do material [J/kg K],
w = ρcp é a capacidade térmica volumétrica [J/m3K] e k é a condutividade térmica do material
[W/mK].

A solução da Equação (1) não pode ser obtida empregando diretamente o método analítico
Separação de Variáveis, visto que este método só é aplicável a problemas homogêneos (equação
governante e condições de contorno homogêneas) tornando necessário a utilização de métodos ana-
líticos mais sofisticados como a Técnica da Transformada Integral Clássica (CITT) ou métodos
numéricos. Para esse problema, também é possível fazer uso de filtros analíticos que podem ser
aplicados ao problema não-homogêneo, e portanto, não-separável a priori, para torná-lo homogê-
neo. No presente trabalho, serão resolvidos uma versão homogênea do problema de transferência
de calor via Separação de Variáveis e o problema não homogêneo via Método de Diferenças Fini-
tas. O objetivo dessas análises é demonstrar a utilização da ferramenta estatística STAN tanto
para problemas com solução analítica quanto para problemas com soluções obtidas por métodos
numéricos.

Na versão homogênea que será considerado no presente trabalho, não há geração interna de
calor, isto é g = 0, além disso, as condições de contorno consideradas são homogêneas e prescritas,
a condição inicial, p(x), é uma função do espaço. A formulação desse problema é dada como

∂T (x, t)

∂t
=

1

α

∂2T (x, t)

∂x2
, 0 < x < 1, t > 0 (5)

T (0, t) = T (1, t) = 0, t > 0 (6)

T (x, 0) = p(x) =

{
x sex < 0, 5

1− x se x ≥ 0
, 0 < x < 1 (7)
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onde α = ρcp/k. Esse problema pode ser facilmente resolvido analiticamente via método de
separação de variáveis, que será descrito resumidamente a seguir.

2.1 Solução do Problema Direto Não Homogêneo
Para obtenção de uma solução aproximada, fisicamente satisfatória, da Equação (8) que modela

o problema físico abordado, o Método das Diferenças Finitas (MDF) será empregado. De modo
geral, o MDF pode ser resumido em dois passos principais; o primeiro passo consiste na discre-
tização do domínio de interesse, i.e., a solução do problema deixa de ser contínua e passa a ser
calculada em pontos discretos da malha. No segundo passo, as derivadas do potencial T (x, t) são
aproximadas por expansões de Taylor usando os nós da malha discretizada. O domínio contínuo
(x, t) é substituído por uma malha computacional onde cada nó (xi, tn) é identificado pelo par de
índices (i, n), onde T (xi, tn) = Tn

i , com i = 0, ..., Nx e n = 1, ..., Nt.
Considerando as expansões em séries de Taylor para as derivadas, o domínio discretizado e a

formulação explícita com diferenças avançadas no tempo e centradas no espaço, a Equação (1)
pode ser então aproximada por

Tn+1
i = rTn

i−1 + (1− 2r)Tn
i + rTn

i+1 +
∆t

ρcp
gi, (8)

onde r = κ∆t
ρcp(∆x)2 , n = 0, 1, 2, ..., Nt e i = 1, ..., Nx − 1. Para a representação das condições de

contorno, são consideradas diferenças avançadas em x = 0 e atrasadas em x = L, resultando

−3Tn+1
1 + 4Tn+1

2 − Tn+1
3 = 0, n = 0, ..., Nt − 1, (9)

Tn+1
Nx−2 − 4Tn+1

Nx−1 +

(
2h∆x

κ
+ 3

)
Tn+1
Nx

=
2h∆x

κ
T0, n = 0, ..., Nt − 1. (10)

A condição inicial, Equação (4), também é discretizada como T 0
i = T0, i = 1, ..., Nx − 1.

Conforme discutido na literatura especializada [5], a abordagem numérica explícita utilizada
neste trabalho, representada pela Equação (8), apresenta uma restrição relacionada à malha. Isso
ocorre porque essa formulação é condicionalmente estável, exigindo que o parâmetro r satisfaça a
condição r < 0.5 para garantir a convergência da solução.

2.2 Solução do Problema Direto Homogêneo via Separação de Variáveis
No Método de Separação de Variáveis, se considera que a solução pode ser escrita como o

produto de duas funções, uma dependendo apenas do espaço (x) e outra apenas do tempo (t)

T (x, t) = Ψ(x)× Γ(t). (11)

Substituindo (11) na equação do calor (5), obtém-se duas equações diferenciais ordinárias, uma em
função do tempo e outra em função do espaço. Essas equações podem ser analiticamente resolvidas,
cujas soluções gerais são dadas por

Γi(t) = e−αµ2
i t (12)

Ψi(x) = sin(µix), µi = iπ, i = 1, 2, . . . . (13)

Aplicando as respectivas condições de contorno e inicial, a solução geral é dada por

T (x, t) =

∞∑
i=1

Bi sin(µiπx) · e−αµ2
i t, Bi =

1

Ni

∫ 1

0

Ψi(x)p(x)dx, Ni =

∫ 1

0

Ψ2
i (x)dx. (14)
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Para tornar a solução computacionalmente viável, a série infinita da Equação (15) precisa ser
truncada em um número finito de termos. Sendo assim, a solução final aproximada passa a ser

TN (x, t) =

N∑
i=1

Bi sin(µiπx) · e−αµ2
i t (15)

onde N é a ordem de truncamento, que deve ser escolhida baseada em uma análise de convergência
da série.

3 Problema Inverso via STAN
Os métodos de resolução de problemas inversos vêm sendo objeto de pesquisa há muitas dé-

cadas, onde diversas metodologias foram desenvolvidas. Os métodos baseados em abordagens
Bayesianas têm se mostrado eficientes e robustos, com grande diferencial em relação às abordagens
clássicas. Dentre as principais vantagens, se destacam a modelagem dos parâmetros do modelo
como variáveis aleatórias e a capacidade de descrever explicitamente qualquer conhecimento prévio
que se tenha disponível sobre os parâmetros desconhecidos. Esse conhecimento é modelado por
meio de densidades de probabilidade a priori. Além disso, a conexão entre os dados observados e
o modelo é realizada via função de verossimilhança, que modela o processo de medição e qualquer
discrepância do modelo. Ao final do processo de estimação, tem-se uma estimativa da densidade de
probabilidade a posteriori dos parâmetros de interesse, que por sua vez caracteriza o conhecimento
a posteriori sobre os parâmetros [4, 6].

Nesse sentido, a plataforma de código aberto STAN é uma ferramenta estatística poderosa e
flexível projetada para resolver diversos problemas empregando a inferência Bayesiana. Ela permite
que usuários especifiquem modelos estatísticos complexos e realizem inferência Bayesiana usando
métodos avançados de amostragem, como o Hamiltonian Monte Carlo (HMC), suportando uma
ampla gama de modelos, desde modelos lineares simples até modelos hierárquicos, dinâmicos e não
lineares. Além disso, é otimizado para lidar com modelos de alta dimensão e dados complexos. O
Hamiltonian Monte Carlo (HMC) é o método principal usado pelo STAN. Esse método se destaca
por ser particularmente eficiente para modelos de alta dimensão, onde métodos tradicionais como o
Metropolis-Hastings podem ser lentos ou ineficientes. Por fim, O STAN pode ser usado com várias
linguagens de programação, incluindo R (via pacote rstan), Python (via pystan ou cmdstanpy),
Julia (via Stan.jl) e Matlab (via MatlabStan).

O STAN funciona em três etapas principais: (1) Especificação do Modelo - O usuário define
o modelo probabilístico em uma linguagem de modelagem própria do STAN; (2) Compilação do
Modelo - O código do modelo é compilado em código C++ para otimização de desempenho;
(3) Amostragem e Inferência - utiliza sua biblioteca de métodos como HMC para amostrar da
distribuição a posteriori dos parâmetros.

Para a especificação do modelo é necessário a definição da verossimilhança, para isso, considere
θ como o vetor composto pelos parâmetros de interesse e fobs os dados observados. Dessa forma
a verossimilhança é dada por fobs|θ, ϕ ∼ N [f(θ), ϕ−1I], onde f(θ) é a solução do Problema Direto,
ϕ é a precisão dos dados experimentais, θ ∼ p(θ) e ϕ ∼ p(ϕ) são as prioris dos parâmetros de
interesse e da precisão. Os códigos com as especificações dos modelos para o problema homogêneo
e não homogêneo são apresentados no repositório no GitHub: Modelos STAN -Transferência de
Calor [7].

3.1 Resultados e Discussões
A solução do problema direto homogêneo resolvido via separação de variáveis foi obtida consi-

derando uma placa com comprimento L = 1m e uma malha computacional com Nx = 51 pontos
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no espaço, ∆x = L/(Nx − 1)m, ∆t = 2 ∗ 10(−4) s, tempo final de simulação tf = 0.08s, ordem de
truncamento da série OT = 50 e posição de medição dos dados experimentais no meio da placa
xmedicao = 0, 05m . A solução do problema não homogêneo resolvido via Método das Diferenças
Finitas Explícito foi obtida considerando uma placa com comprimento L = 0.03m e uma malha
computacional com N = 31 pontos no espaço, ∆x = L/(Nx − 1)m, ∆t = 0, 5 s, tempo final de
simulação tf = 1000s e uma geração interna de energia uniforme (fonte) g = 100.000W/m3. Além
disso, foi considerado para ambos os casos um coeficiente de transferência de calor h = 15W/m2K
e T0 = 20 ℃.

A Figura 1 apresenta as superfícies solução obtidas para o problema homogêneo (Caso 1) e não
homogêneo (Caso 2).

(a) Caso 1 (b) Caso 2

Figura 1: Superfícies Solução dos Problemas Homogêneo e Não Homogêneo. Fonte: O autor.

As Figuras 2 e 3 apresentam as cadeias de Markov simuladas e as densidades a posteriori mar-
ginais estimadas dos parâmetros de interesse nos casos 1 e 2. A Tabela 1 apresenta as estimativas
obtidas para os parâmetros de interesse, para os casos 1 e 2, com a média estimada, o desvio padrão
e também os intervalos obtidos com 95% de credibilidade.

Tabela 1: Resumo das distribuições a posteriori dos parâmetros.

Casos Parâmetro Exato Média Desvio Padrão (DP) Intervalo Credibilidade (IC)

Caso 1 α 1,0 0,9958 0,0045 [0,9868; 1,0046]
σe1 0,01 0,0101 0,0003 [0,0094; 0,0108]

Caso 2
w 720.000 719.999,2 10,8935 [719978,3; 720020,6]
k 0,6 0,5994 0,0005 [0,5984; 0,6004]
σe2 0,01 0,0092 0,00008 [0,0090; 0,0094]
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Figura 2: Cadeias de Markov e densidades marginais a posteriori para o problema homogêneo - Caso 1.
Fonte: O autor.

Figura 3: Cadeias de Markov e densidades marginais a posteriori para o problema não homogêneo -
Caso 2. Fonte: O autor.

Como pode ser observado pelos resultados obtidos, o Método HMC, implementado utilizando a
ferramenta STAN, apresentou resultados acurados, com erros relativos percentuais baixos, sendo o
maior erro relativo obtido da ordem de 10−2 para σe2, resultando em estimativas dos parâmetros de
interesse próximas dos respectivos valores exatos. Além disso, o tempo de uma execução do método
foi baixo, em torno de 130 segundos, mostrando assim a eficiência computacional da ferramenta
adotada. Além disso, o presente trabalho logrou êxito em demonstrar a utilização do STAN como
ferramenta útil e eficaz para a resolução de problemas inversos, mostrando assim que a mesma tem
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grande potencial de aplicação para diversos problemas de engenharia.

4 Conclusões
O presente trabalho teve como objetivo principal a utilização da ferramenta estatística STAN,

que utiliza a abordagem Bayesiana, para a estimação de propriedades termofísicas de uma placa
termicamente fina. Apresentou-se uma formulação do problema direto para o problema homogê-
neo e não homogêneo, cujas soluções foram obtidas empregando-se os Métodos de Separação de
Variáveis e de Diferenças Finitas Explícito, respectivamente. O problema inverso foi formulado
via Inferência Bayesiana onde foi utilizado o Método HMC implementado no STAN para resol-
ver os problemas inversos de estimação de parâmetros associados aos problemas homogêneo e não
homogêneo. Observou-se que a ferramenta empregada, nas condições adotadas neste trabalho,
apresentou resultados adequados, conseguindo estimar acuradamente os parâmetros de interesse
de cada caso abordado.
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