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Resumo. O objetivo do trabalho é caracterizar a influência de uma vacinação em massa na disse-
minação e na probabilidade de extinção de uma doença epidemiológica através de uma abordagem
estocástica. Na análise, o número de indivíduos que cada membro infectado da população pode
infectar, sem vacinação, é modelado como uma variável aleatória B, o número de indivíduos que
cada membro infectado da população pode transmitir carga viral, com vacinação é modelado como
uma variável aleatória C e o número de indivíduos infectados ao longo do tempo é modelado como
um processo estocástico de ramificação I. A porcentagem da população vacinada é modelada por
outra variável aleatória, denominada V , e a eficácia da vacina é modelada por uma quarta variável
aleatória E. A comparação é feita com base em histogramas e estatísticas amostrais, como média
e variância, do número de indivíduos infectados ao longo do tempo. Os modelos estatísticos são
obtidos por meio de simulações de Monte Carlo, considerando 21 diferentes valores de parâmetros
dentro da mesma família de variáveis aleatórias para B e C: a binomial. Foram realizadas 4000
simulações do processo de ramificação para cada um dos 21 valores, considerando-se seis possíveis
níveis de porcentagem da população vacinada e quatro valores distintos de eficácia da vacina. No to-
tal, foram realizadas 2.1 milhões de gerações do processo de ramificação, caracterizando o problema
como big data.
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1 Modelo Probabilístico do Contágio e da Propagação de
uma Doença em uma População Não Vacinada

Neste trabalho, modelam-se as transmissões com e sem vacinação por variáveis aleatórias, o
número de infectados ao longo do tempo como um processo de ramificação, e analisa-se a influência
da vacinação na disseminação e probabilidade de extinção como proposta em [1, 2]

O número de indivíduos contaminados por cada membro já infectado j da população é modelado
como uma variável aleatória (v.a.) discreta Bj . Supõe-se que as v.a. Bj sejam independentes
e identicamente distribuídas (IID). Com isso, denominamos B a v.a. que modela o contágio.
O número de infectados em uma população não vacinada ao longo do tempo é modelado por
um processo estocástico I de parâmetro discreto chamado de processo de ramificação. Dado um
conjunto de parâmetros discretos N = {0, 1, 2, 3, ...}, representando gerações ao longo do tempo,
para cada n ∈ N , I(n) = In é uma variável aleatória discreta. In representa o número de infectados
na n-ésima geração e é dado pela soma do número de pessoas que foram contagiadas por cada um
dos infectados na geração n− 1, anterior.
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Para ilustrar uma realização do processo de ramificação, considere, por exemplo, que o processo
de contaminação começa com um indivíduo infectado, i0 = 1. Na geração n = 1, temos 3 indivíduos
contaminados pelo indivíduo infectado inicialmente, i1 = 3. Esse número de infectados é obtido
fazendo-se uma realização da variável aleatória B. Na próxima geração, n = 2, o número total de
infectados é a soma do número de pessoas que foram contagiadas por cada um dos três infectados na
geração anterior. Para obter esse número, geramos três realizações independentes de B e somamos
os valores sorteados. No exemplo descrito, o primeiro infectado contaminou apenas um indivíduo
e os outros dois não fizeram nenhuma contaminação. Dessa forma i2 = 1. Na próxima geração,
n = 3, o único indivíduo contaminado na geração anterior contaminou quatro novos indivíduos,
fazendo i3 = 4. Na geração n = 4, o número total de infectados, que é a soma do número de pessoas
que foram contagiadas por cada um dos quatro infectados em n = 3, foi obtido gerando-se quatro
realizações independentes de B e somando os valores sorteados. Na quarta geração, o primeiro
infectado contaminou dois indivíduos, o segundo infectado não fez nenhuma contaminação e o
terceiro e quarto fizeram duas contaminações cada. Totalizando i4 = 7. Se nenhum desses sete
indivíduos contaminados fizer novas contaminações, teremos in = 0, ∀n ≥ 5, e nesse caso a doença
estará extinta. A probabilidade de extinção da doença em cada geração, dada por en, é uma das
variáveis de interesse desse trabalho.

Para analisar a influência do modelo probabilístico da v.a. que modela o contágio entre in-
divíduos na propagação da doença e probabilidade de extinção em uma população não vacinada,
foram feitas simulações de Monte Carlo e construídos modelos estatísticos para a propagação da
doença considerando-se 21 diferentes valores de parâmetros dentro da mesma família de variáveis
aleatórias para B, binomial. Para cada um dos 21 valores de parâmetros, 4.000 realizações do pro-
cesso de ramificação da geração n = 0 a n = 20 foram computadas. Para fazer todas as simulações
gastou-se aproximadamente 30 horas de processamento (tempo de CPU).

(a) Média amostral para os valores críticos de µB . (b) Probabilidade de extinção. para µB críticos

Figura 1: Gráficos construídos com 4000 realizações do processo de ramificação em um local com uma
população sem vacinação. Fonte: autoria própria.

A distribuição binomial, que depende dos parâmetros m e p, pode ser interpretada, junto aos
conceitos de epidemiologia, como um experimento no qual um indivíduo encontra com um número
m de pessoas, com uma probabilidade p de infectar cada uma delas. Depois desse encontro,
avaliamos se cada uma das m pessoas foi ou não infectada, contando o número de novos contagiados.
Esse cenário retrata uma sociedade com regras de distanciamento restritas, onde, cada indivíduo
tem um contato limitado a, no máximo, m indivíduos. Nas simulações, fazemos m = 3.

Dentre todos os resultados obtidos, destacamos na Figura 1 os resultados dos cenários conside-
rados críticos de média µ de B, dado por µB = m ∗ p, mostrando a média de infectados, em cada
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geração, durante a propagação da doença e probabilidade de extinção ao longo das gerações en.
Para o valor de µB < 1 temos p = 0.16; para µB = 1 temos p = 0.33; e para µB > 1 temos p = 0.50.
Vale destacar que, para a Figura 1(a), assim como para as Figuras 2(a), 4(a), 5(a) e 6(a), os valores
em amarelo no eixo à direita correspondem à curva amarela, que descreve o comportamento da
média amostral nos cenários em que o a binomial tem média maior do que 1. Os valores em preto
no eixo à esquerda correspondem às curvas azul e vermelha.

2 Modelo Probabilístico para o Contágio e Propagação de
uma Doença em uma População Vacinada

Dada uma população, modelaremos o contágio de um indivíduo da seguinte maneira. Baseado
no modelo de ramificação da seção 1, um indivíduo infectado (i0 = 1), sai de sua casa e encontra
m indivíduos. Supondo que em cada encontro o infectado pode ou não transmitir uma carga
viral suficiente para contagiar o próximo, modelaremos o número de indivíduos que um indivíduo
infectado encontrou e transmitiu a carga viral suficiente para contagiar com a variável aleatória
Cj = binomial (m, p). Assim como o contágio da seção 1, todos os Cj são independentes e
identicamente distribuídos (IID). Analogamente à variável B, chamaremos todas as v.a.s Cj de
C. A cada contato com transmissão suficiente de carga viral, então, avaliaremos duas situações:
primeiro, se esse indivíduo foi vacinado ou não; segundo, caso ele tenha sido vacinado, se a vacina
foi efetiva ou não. Isto é, se ele está imunizado de fato, ou não. O primeiro evento, vacinação do
indivíduo, será modelado por uma variável aleatória discreta V = bernoulli (pV ). O segundo evento,
efetividade da vacina, será modelado por outra variável aleatória discreta El = bernoulli (pE). Em
outras palavras, um indivíduo infectado entra em contato com m indivíduos e transmite carga viral
suficiente para contaminação de C indivíduos. Para cada um desses C novos indivíduos fazemos
uma pergunta: "Esse indivíduo foi vacinado?". A probabilidade pV determina a porcentagem
de população vacinada. Se ele tiver sido vacinado nos perguntamos: "Será que a vacinação foi
efetiva?". A eficácia da vacina é dada por pE . Se foi, então a imunização funcionou, e este
indivíduo está livre da doença. Se não foi, então ele está infectado.

Essa análise é feita para cada um dos C indivíduos que o primeiro infectado entra em contato e
transmite carga viral suficiente para infectá-los. A cada geração n, o total de indivíduos infectados
In é dado pela quantidade de pessoas que entraram em contato com um indivíduo infectado e
receberam carga viral suficiente para se contaminar com a doença e ou não tomaram vacina, ou
tomaram e ela não foi de fato eficaz. Assim, para modelar o novo cenário temos:

• I(n) = In, número total de infectados em uma geração;

• Cj , número de indivíduos que entraram em contato com o j-ésimo indivíduo infectado da
geração anterior e receberam carga viral suficiente para se contagiar com a doença, modelado
por Cj = binomial(m, p), v.a. discreta;

• Vk, variável aleatória que determina se um indivíduo que teve contato com um infectado e
recebeu carga viral suficiente para se contaminar está ou não está vacinado é modelada por
VK = bernoulli(pV ), v.a. discreta;

• El é a variável aleatória que determina se um indivíduo que teve contato com um infectado,
recebeu carga viral suficiente para contaminação mas recebeu a vacina se contamina ou não
com a doença. El é modelado por El = bernoulli(pE), v.a. discreta.

Assim como fizemos com B e C, Vk e El serão chamadas de V e de E, respectivamente.
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3 Influência da Vacinação no Comportamento da Epidemia

Para analisar a influência de uma vacinação no total de infectados em cada geração, na pro-
pagação da doença e nas probabilidades de extinção, foram feitas simulações de Monte Carlo e
construídos modelos estatísticos para a propagação da doença considerando 21 diferentes valores
de parâmetro p dentro da mesma família de variáveis aleatórias para C: binomial, representando
distintas probabilidades de contágio. Para cada um desses 21 valores de p, foram escolhidas 6
diferentes porcentagens de população vacinada (2%, 10%, 20%, 50%, 75% e 100%), e para cada
uma dessas, foram escolhidas 4 valores de eficácia de uma vacina (50.4%, 62.1%, 70.4% e 95%).
Para cada cenário descrito, 4.000 realizações do processo de ramificação da geração n = 0 a n = 20
foram computadas. No total, foram realizadas mais de 2 milhões realizações do processo esto-
cástico de ramificação. Para fazer todas as simulações gastou-se aproximadamente 100 horas de
processamento (tempo de CPU). O elevado custo computacional em tempo e volume de dados, ca-
racteriza o problema como big data. Um estudo de convergência foi desenvolvido para determinar
o número de simulações [3]. Estatísticas amostrais (média, variância e probabilidade de extinção)
e histogramas foram construídos com as respostas das realizações.

Na Figura 2 estão os resultados obtidos para um dos casos analisados. Nesse caso, considera-se
que foram vacinados 20% da população, com uma vacina de eficácia comprovada de 50.4% e com
o contato C entre os indivíduos modelado por uma binomial(3, p), com os valores de p estipulados
na seção 1.

-
(a) Média amostral para µC críticos. (b) Probabilidade de extinção para µC críticos

Figura 2: Gráficos construídos com 4000 realizações do processo de ramificação em um local com 20% da
população vacinada com uma vacina com 50.4% de eficácia. Fonte: autoria própria.

Comparando os dois conjuntos de gráficos das Figuras 1 e 2 vemos que: para a média µ das
binomiais que descrevem B e C quando µC < 1 a epidemia se extingue com mais rapidez; para
µC = 1 a média deixa de flutuar em torno de 1 e passa a se comportar como uma função que tem a
média µB < 1. Comparando os gráficos da Figura 2 com os da Figura 1 que mostram a propagação
da epidemia em uma população não vacinada, observa-se que para µB = µC > 1, o decaimento da
média amostral do número de infectados por geração acelera com a presença da vacinação. Além
disso, a probabilidade de extinção da doença na vigésima geração que antes tendia à 23.6% para a
tender à 35.7% com a vacinação. Na Figura 3 mostra-se os histogramas normalizados do número
de infectados nas gerações n = 2, 4, 6 e 20. Para n = 20, observa-se que o histograma tem suporte
[0, 3000] infectados e fornece uma media amostral de 400 infectados. Assim, vacinando apenas 20%
da população é possível diminuir o total de infectados quando comparado ao cenário não vacinado
em que a média amostral para n = 20 era de 4000 infectados, 10 vezes maior.
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20% da população vacinada, 50.4% de eficácia, C = binomial (3, 0.5)

Figura 3: Histogramas normalizados construídos com 4000 realizações do número total de infectados em
quatro diferentes gerações. Fonte: autoria própria.

3.1 Influência da Porcentagem da População Vacinada
Vimos que com 20% da população vacinada já temos uma mudança significativa no compor-

tamento da epidemia, em termos de pessoas infectadas e da tendência de ela se extinguir. No
entanto, será que é possível mudarmos totalmente o resultado de uma epidemia apenas aumen-
tando a quantidade de pessoas vacinadas? Para tal, repetimos o mesmo processo descrito no início
dessa seção, avaliando diferentes porcentagens de população vacinada. Dentre todos os valores cal-
culados, estão mostrados a seguir populações que tiveram 50% e 75% de seus indivíduos vacinados
com uma vacina de 50.4% de eficácia, com o contato C entre os indivíduos modelado por uma
binomial(3, p). Os resultados são mostrados nas Figuras 4 e 5.

(a) Média amostral para os valores críticos de µC . (b) Probabilidade de extinção para µC críticos

Figura 4: Gráficos construídos com 4000 realizações do processo de ramificação de um local com 50% da
população vacinada com uma vacina com 50.4% de eficácia. Fonte: autoria própria.

Com 50% da população vacinada vemos um decaimento significativo no número de infectados
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quando comparado com o número de infectados em uma população não vacinada. A epidemia
em uma população que tem os contatos modelados por v.a.s com média µC ≤ 1 tende a ter
a probabilidade de se extinguir com 100% de probabilidade, além de se extinguir com menos
gerações. Para contatos com µC > 1 vemos o decaimento mais significativo até então quando
olhamos a média de infectados ao longo das gerações. Como ilustrado na Figura 1(a), a média
de infectados sem vacinação é da ordem de 4000, enquanto com a introdução da vacina, essa
média cai para cerca de 10 na vigésima geração, conforme mostrado na Figura 4(a). Além disso,
a probabilidade de extinção aumenta significativamente, mudando sua tendência de 23, 6% para
67, 4%, um crescimento de aproximadamente 200%, como evidenciam as Figuras 1(b) e 4(b).

(a) Média amostral para os valores críticos de µC . (b) Probabilidade de extinção para µC críticos

Figura 5: Gráficos construídos com 4000 realizações do processo de ramificação de um local com 75% da
população vacinada com uma vacina com 50.4% de eficácia. Fonte: autoria própria.

Com 75% da população vacinada, observa-se que, em todos os três casos críticos, µC < 1,
µC = 1 e µC > 1, a média amostral de infectados ao longo das gerações tende a diminuir. É
importante destacar o caso em que µC > 1, pois, nos cenários anteriores, o número médio amostral
de infectados tendia a aumentar. No entanto, com 75% da população vacinada, essa tendência
se inverte, resultando em uma diminuição do número médio amostral de infectados ao longo das
gerações, conforme ilustrado na Figura 5.

3.2 Influência da Eficácia da Vacina

Outro fator de análise é a eficácia da vacina aplicada. Vimos que com uma vacina com 50.4%
de eficácia temos uma mudança significativa no comportamento da epidemia, principalmente com
a vacinação de pelo menos 75% da população. No entanto, será que também é possível mudarmos
totalmente o resultado de uma epidemia vacinando menos gente, mas com uma vacina mais eficaz?
Para tal, repetimos o mesmo processo descrito no início dessa seção, avaliando diferentes valores
de eficácia de vacina. Dentre todos os valores de eficácia simulados, são mostrados a seguir na
Figura 6 os resultados com 50% da população vacinada com uma vacina com 70.4% de eficácia.
Em todos os casos, temos o contato C entre os indivíduos modelado por uma binomial(3, p). A
Figura 6 mostra que se vacinarmos 50% da população com uma vacina de eficácia de 70.4% é
possível mitigar a epidemia. A média amostral dos três casos críticos tem um comportamento
decrescente, e valor ao qual a probabilidade de extinção tende aumenta.
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(a) Média amostral para os valores críticos de µC . (b) Probabilidade de extinção para µC críticos.

Figura 6: Gráficos construídos com 4000 realizações do processo de ramificação de um local com 50% da
população vacinada com uma vacina com 70.4% de eficácia. Fonte: autoria própria.

4 Considerações Finais
Dado que uma parcela da população está vacinada, modelamos o contato capaz de transmitir

carga viral por uma v.a. discreta, C = binomial(m, p); a determinação se um indivíduo que
teve contato com um infectado está ou não vacinado foi modelada por outra v.a discreta, V =
bernoulli (pV ); a eficácia da vacina foi modelada por uma v.a. discreta, E = bernoulli (pE).
O número total de indivíduos infectados ao longo do tempo foi modelado por um processo de
ramificação estocástico In. Para caracterizar a propagação das incertezas na disseminação da
doença, foram construídos histogramas do número de indivíduos infectados. Estatísticas amostrais
e probabilidades de extinção foram calculadas. Foi feita uma análise da influência da eficácia da
vacina no processo de ramificação, bem como da influência da porcentagem da população vacinada.
Os resultados obtidos mostram que é possível controlar e mitigar uma epidemia com uma vacinação
adequada. Vacinando 75% da população, com os valores de eficácia de vacina propostos, os três
casos considerados críticos mostram o decaimento da média de infectados em cada geração, e a
probabilidade de extinção tendendo a 100%. As Figuras 4 e 6 corroboram essa ideia, mostrando
que vacinando 50% da população com uma vacina de eficácia de 50.4% não foi possível reverter
todos os três casos críticos, mas se for utilizada uma vacina de eficácia de 70.4% conclui-se que é
possível mitigar a epidemia.
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