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Random Walks on Finite Discrete Velocity Fields

Eduardo da S. Schneider1

CEng/UFPel, Pelotas, RS

Abstract. This work presents a discrete-time random velocity field on a class of one-dimensional
finite lattices with periodic boundary conditions. We define the Eulerian and Lagrangian location
processes, analyzing their relationship through circulant and permutation transition matrices. By
examining the second-largest eigenvalue modulus, we characterize the convergence rate of the La-
grangian location process to its invariant distribution. We explore how spatial domain size and
parity influence convergence behavior, providing insights into stochastic transport dynamics in dis-
crete settings.
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1 Introduction
An important problem in statistical fluid mechanics is to obtain the statistical description of

the motion of a single particle in a random velocity field. A fundamental example is the passive
tracer transport problem, where the particle’s motion, governed by

dXt

dt
= U(Xt, t), t > 0; X0 = 0, (1)

does not influence the velocity field U. The main objective is to derive the probability law of the
particle’s position Xt, which means the entire process {Xt, t ≥ 0}, from the law of U [2, 3, 6, 7].

Closely related to the passive tracer problem is the task of determining the law of the Lagrangian
velocity process {U(Xt, t) : t ≥ 0}, which describes the velocity experienced by an observer moving
with the particle. An analogous discrete framework was introduced by Bennett and Zirbel [1] for
a broad class of Eulerian velocity fields U on a periodic lattice in discrete time. Assuming that
U is homogeneous and Markovian in time, it can be decomposed into the velocity type I and the
location L, such that (I,L) forms a Markov chain. Moreover, the generalized Lagrangian velocity
V exhibits the same hidden Markov structure—with its location parameter M evolving differently
from L. Bennett and Zirbel [1] argued that the discrete space-time approach provides a meaningful
simplification of the continuous model, with the transition matrix of (I,M) derived explicitly in
terms of (I,L) and encoding information about the rate of convergence to equilibrium.

In Figure 1, we present discrete approximations of a two-dimensional continuous velocity field
for various lattice sizes. Bennett and Zirbel [1] further argued that a discrete space-time approach
can provide a meaningful simplification of the continuous model. For instance, the discrete equation
of motion can be written as

Xt+1 = Xt +Ut(Xt), t = 0, 1, 2, . . . ; X0 = 0, (2)

which preserves the nonlinear relationship between U and Xt as in the continuous case.
In this work, we focus our attention on a subclass of one-dimensional velocity fields defined

on a finite lattice with periodic boundary conditions. We also establish the type and location
processes, as well as the transition matrices for L and M, which allow us to discuss and analyze
the convergence rate of the Lagrangian location process M.
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(a) 10 x 10 lattice approximation. (b) 20 x 20 lattice approximation.

(c) 30 x 30 lattice approximation. (d) Continuous velocity field.

Figure 1: Approximations of a continuous velocity field. Adapted from Bennett and Zirbel [1].

2 Discrete Velocity Fields
Let n be an integer and let Dn = {1, . . . , n} be an ordered set, and define a sum on Dn as a

componentwise sum modulo n. In particular, note that Dn has n points, and we can identify the
set Dn with the set of ordered counterclockwise vertices of a regular n-gon inscribed in a circle.

Definition 2.1. A velocity field u on Dn is a function u : Dn → Z taking values on Z. Let U
be the set of all velocity fields u defined on Dn. A random velocity field U is a stochastic process
U = {Ut; t = 0, 1, . . .} taking values on U .

Remark 2.1. Notice that we may represent each velocity field u as an n-dimensional vector,
allowing us to write u = [u(1) u(2) . . . u(n)]. In Figure 2, we represent two velocity fields:
u1 = [2 0 1 0 0 3 0 0] and u2 = [1 2 0 − 3 0 0 0 0] on D8 using arrows. In particular, the
absence of an arrow indicates that the velocity field is zero at that point.

Remark 2.2. Notice that each velocity field u ∈ U may act on Dn additively. This action can be
viewed as a function α : Dn → Dn defined by α(x) = x + u(x), x ∈ Dn. If α corresponds to a
permutation on Dn, we say u is called incompressible; otherwise, it is called compressible.

Two important definitions regarding the statistical properties of velocity fields are as follows:

Definition 2.2. Let U be a random velocity field. For each x0 ∈ Dn, define the random velocity
field Ũ by Ũt(x) = Ut(x0 + x), for x ∈ Dn and for t = 0, 1, 2, . . .. We say that U is homogeneous
if Ũ has the same probability law as U for all x0 ∈ Dn.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0330 010330-2 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0330


3

(a) Velocity field u1. (b) Velocity field u2.

Figure 2: Examples of two velocity fields on D8. Source: author.

Definition 2.3. Let U be a random velocity field. For each t0 ∈ {0, 1, 2, . . .}, define the random
velocity field Ũ defined by Ũt(x) = Ut0+t(x), for x ∈ Dn and for t = 0, 1, 2, . . .. We say that U is
stationary if Ũ has the same probability law as U for all t0 = 0, 1, 2, . . ..

The particle’s trajectory in discrete space and time satisfies the following equation

Xt+1 = Xt +Ut(Xt), t = 0, 1, 2, . . . ; X0 = 0, (3)

where Ut, for t = 0, 1, 2, . . ., takes values in the set of all velocity fields on Dn. Analogous to the
continuous case, the Lagrangian velocity field V satisfies the equation below

Vt(x) = Ut(x+Xt), x ∈ Dn, t = 0, 1, 2, . . . . (4)

Therefore, we can write the stochastic process Xt as an additive functional of V as

Xt = X0 +

t−1∑
s=0

Vs(0), t = 0, 1, 2, . . . . (5)

Remark 2.3. As far as we know, there are few theoretical results concerning these processes in
discrete space and time. However, similar to the continuous space-time case, if U is homogeneous,
stationary, and incompressible, then V is strictly stationary [1, 8].

3 Eulerian and Lagrangian Location Processes
In this work, we consider a particular case of a random velocity field in discrete space and time,

where it is described by a single incompressible vortex that moves according to a random walk.
Formally, let u ∈ U be an incompressible velocity field. Let c : Dn → [0, 1] be a non-negative
function defined on Dn such that

∑
x∈D c(x) = 1. Let A0, A1, . . . be independent and identically

distributed random variables in Dn, with P(At = x) = c(x). Let L0 be uniformly distributed on
Dn and independent of Ai, for i = 0, 1, . . .. The Eulerian location process L is given by

Lt+1 = Lt +At, t = 0, 1, 2, . . . . (6)

Moreover, the transition matrix P of the Eulerian location process L is given by

P (y, z) = P(Lt+1 − Lt = z − y) = c(z − y), (7)

for y, z ∈ Dn. In particular, P is a doubly stochastic circulant matrix.
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Remark 3.1. Notice that we can define a velocity field U by

Ut(x) = u(x− Lt), x ∈ Dn, t = 0, 1, 2, . . . . (8)

So, U is incompressible, homogeneous, and stationary [1]. Since Ut depends on the Markov process
Lt, we can conclude that U has a hidden Markov structure.

The generalized Lagrangian velocity V can be written in terms of the vortex location Lt and
the particle position Xt as Vt(x) = u(x−(Lt−Xt)), for x ∈ Dn. So, we can define a new stochastic
process M by Mt = Lt −Xt, t = 0, 1, 2, . . ., called the Lagrangian location.

Remark 3.2. Notice that M evolves over the time according to

Mt+1 = σ(Mt) +At, t = 0, 1, 2, . . . , (9)

where σ : Dn → Dn is defined by σ(x) = x− u(−x), for all x ∈ Dn. Therefore, M is Markov.

Remark 3.3. Comparing Eulerian and Lagrangian location processes, L and M, given by Eq. (6)
and Eq. (9), respectively, we observe that these two processes are not significantly different. The
Eulerian process involves successive shifts due to the action of At, while the Lagrangian process
develops through a shuffle σ(Mt) followed by a shift At. We know the transition matrix P for the
Eulerian location process L, according to Eq. (7). Let Q be the transition matrix for the Lagrangian
location process M. Thus, we can write the transition matrix Q for the Lagrangian location process
M as Q = ΣP , since M makes a deterministic transition due to the action of σ, which can be
represented by a permutation matrix Σ, followed by the addition of At, or simply the action of P .

3.1 Convergence to the Stationary Distribution

We can ensure that both Eulerian and Lagrangian location processes are irreducible and aperi-
odic by construction [1]. Since an irreducible and aperiodic Markov chain converges to its unique
stationary distribution [5], and the spatial domain Dn is a finite lattice with u as an incompress-
ible velocity field, both processes converge to the uniform distribution on Dn. This leads to an
interesting question: assuming the initial position of the Markov chain is known, how long does it
take for the probability of finding the particle at any given position to become uniform across Dn?

Remark 3.4. Notice that, as a general result, if T is the transition matrix of a Markov chain, then
the second-largest eigenvalue modulus of T , denoted by Eig2(T ), when well-defined and strictly less
than 1 in modulus, determines the rate of convergence to equilibrium [4]. Equivalently, Eig2(T ) also
controls how quickly Tn converges to its limit as n → ∞. Moreover, every doubly stochastic matrix
T has at least one eigenvalue equal to 1, and for an irreducible and aperiodic doubly stochastic
matrix, all other eigenvalues have a modulus strictly less than 1.

In fact, we are interested in reformulating the question above in terms of Eig2(P ) and Eig2(Q),
which define the transition matrices for the Eulerian and Lagrangian location processes, respec-
tively, and understanding, based on the magnitude of Eig2(P ) and Eig2(Q), how quickly each
process converges to its invariant distribution.

3.2 Eulerian Location Process as a Random Walk

Let P be the transition matrix of the Eulerian location process L. By defining the location
process L as a simple random walk, we can interpret the entries of P as the probabilities of the
vortex of the velocity field moving one unit to the right, to the left, or remaining in the same
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position; that is, Pij = P(L1 = j | L0 = i), for i, j = 1, 2, . . . , n. More specifically, the matrix P is
circulant and takes the following simple form:

P =


π1 π2 0 · · · 0 πn

πn π1 π2 · · · 0 0
...

...
...

. . .
...

...
π2 0 0 · · · πn π1

 , (10)

where π1, π2, πn ≥ 0 and π1 + π2 + πn = 1. For simplicity, we use P = [π1 π2 0 . . . πn].

3.3 Circular and Quasi-Circular Velocity Fields
In this subsection, we introduce and define a set of circular and quasi-circular velocity fields u

with a simple structure. To illustrate these velocity fields, for example, consider the spatial domain
D6 and velocity fields ui, for i = 1, 2, . . . , 6, as shown in Figure 3.

Remark 3.5. Note that each velocity field ui represented in Figure 3 is incompressible, allowing
us to associate a permutation matrix Σi with it. From now on, we will identify the velocity field
ui and the permutation matrix Σi as representing the same vortex type. For each velocity field ui,
we can assign its size as the number of consecutive points moved one unit counterclockwise by ui.
For example, velocity field identified by Σ4 has size 3.

Figure 3: Circular and quasi-circular velocity fields in D6. Source: Author.

We aim to analyze the behavior of Eig2(ΣiP ), which provides insight into the rate of conver-
gence to the invariant distribution of the Lagrangian location process M.

Remark 3.6. Let P = [0.2 0.3 0 . . . 0 0.5] be a circulant matrix, associated with the Eulerian
location process L described by Eq. (6). Thus, the transition matrix P assigns probabilities of 0.5
to move left, 0.3 to move right, and 0.2 to stay in place. Let Qi = ΣiP , for i = 1, 2, . . . , 6, be
defined according to the corresponding velocity fields shown in Figure 3, which are associated with
the Lagrangian location process M as in Eq. (9). Notice that Qi does not have the same circulant
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structure as P , except for the matrix Σ1. In fact, Σi permutes some rows of P to obtain the
matrix Qi. We calculated the second-largest eigenvalue modulus Eig2(ΣiP ) for each matrix Σi, for
i = 1, 2, . . . , 6, and plotted a graph as shown in Figure 4. This allows us to explore graphically the
behavior of Eig2(Qi) as we increase the size of the velocity field ui. We highlight the structure of
Q4 = Σ4P , where we found the minimum second-largest eigenvalue modulus. This indicates that
the random velocity field associated with u4 converges to the invariant distribution more quickly
than the other circular or quasi-circular velocity fields on D6.

Figure 4: 2nd largest eigenvalue modulus versus size of Σi for n = 6. Source: Author.

That analysis also raises an important question about whether the spatial domain size is a
determining factor in the location of the second-largest eigenvalue modulus and how the size of
the spatial domain affects the rate of convergence in such settings. In Figure 5, we consider two
distinct domains for n = 40 and n = 41 while keeping the same transition matrix P . These graphs
suggest that for larger spatial domains, we observe slower convergence to the invariant distribution.
Moreover, we observe a slight variation in the behavior of the graphs when considering the parity
of the spatial domains: for n = 40, the velocity field u21 provides the highest convergence rate; for
n = 41, velocity fields u21 and u22 have similarly fast convergence rates.

Figure 5: 2nd largest eigenvalue modulus versus size of Σi for P constant. Source: Author.

Remark 3.7. By considering distinct transition matrices P , associated with different random
walks on Dn, we can also explore the effect of P on convergence to equilibrium. In Figure 6, we
consider two different matrices P and observe distinct patterns in the resulting graphs, even for the
same spatial domain D40 and velocity fields, across all possible circular or quasi-circular velocity
fields. This observation raises theoretical questions on how random walks affect convergence rates.
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Figure 6: 2nd largest eigenvalue modulus versus size of Σi for distinct matrices P . Source: Author.

4 Conclusion
In this work, we propose a random velocity field on one-dimensional finite lattices with periodic

boundary conditions and discrete-time dynamics. We define the Eulerian and Lagrangian location
processes, examining their interdependence. By modeling the Eulerian process as a random walk
governed by a circulant matrix P and circular or quasi-circular velocity fields represented by
permutation matrices Σi, we analyze the convergence rate of the Lagrangian process to its invariant
distribution, tied to the second-largest eigenvalue modulus of matrices Qi = ΣiP .

Beyond our analysis, we explore how spatial domain size, parity, and different choices of P
influence convergence to equilibrium. These findings suggest further research into how structural
variations in discrete velocity fields affect spectral properties of Eulerian and Lagrangian processes.
Future work may extend this approach to higher-dimensional lattices, non-circulant velocity fields,
or alternative transition structures, broadening our understanding of convergence behaviors in
discrete stochastic systems.

References
[1] C. D. Bennett and C. L. Zirbel. “Discrete velocity fields with explicitly computable Lagrangian

law”. In: Journal of Statistical Physics 111 (2003), pp. 681–701.
[2] S. Corrsin. “Atmospheric diffusion and air pollution”. In: Advances in Geophysics 6 (1959),

p. 161.
[3] F. W. Elliott and A. J. Majda. “Pair dispersion over an inertial range spanning many decades”.

In: Physics of Fluids 8.4 (1996), pp. 1052–1060.
[4] S. T. Garren and R. L. Smith. “Estimating the second largest eigenvalue of a Markov transition

matrix”. In: Bernoulli 6.2 (2000), pp. 215–242.
[5] D. A. Levin and Y. Peres. Markov chains and mixing times. Vol. 107. American Mathe-

matical Soc., 2017.
[6] G. I. Taylor. “Statistical Theory of Turbulence”. In: Proceedings of the Royal Society of

London A 151.873 (1935), pp. 421–444.
[7] W. A. Woyczynski. “Passive tracer transport in stochastic flows”. In: Stochastic Climate

Models 49 (2012), pp. 385–396.
[8] C. L. Zirbel. “Lagrangian observations of homogeneous random environments”. In: Advances

in Applied Probability (2001), pp. 810–835.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0330 010330-7 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0330

