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Resumo. No presente trabalho, apresentamos três versões do modelo de Sel’kov(1968 [8]). A
versão clássica, usado para descrever oscilações glicolíticas, uma versão em derivada fracionária
de Caputo, dada em [6], que foi usada para descrever fenômenos microssísmicos e nossa proposta
em derivadas fracionárias baseado na técnica apresentado em [4] e [5] onde teremos o operador
de Riemann-Liouville presente no modelo. Usando o método numérico L1, apresentaremos uma
comparação das três formas do modelo de Sel’kov exibindo as soluções, trajetórias de fase e pontos
de equilíbrio.

Palavras-chave. Modelo de Sel’kov, Derivada Fracionária de Caputo, Derivada Fracionária de
Riemann-Liouville, Sistema não Linear e Sistemas Fracionários.

1 Introdução
O modelo de Sel’kov é um sistema dinâmico não linear proposto para descrever oscilações

glicolíticas em sistemas bioquímicos, especificamente envolvendo substratos e produtos. Ele é
conhecido por exibir comportamentos auto-oscilatórios, o que o torna útil para modelar fenômenos
como as vibrações glicolíticas. Originalmente, o modelo foi aplicado em biologia, mas também tem
sido adaptado para descrever fenômenos microssísmicos. A versão fracionária do modelo de Sel’kov
incorpora a influência da hereditariedade (memória) no sistema, o que é feito utilizando derivadas
fracionárias no sentido de Caputo. Derivadas fracionárias são particularmente úteis para modelar
sistemas com dependência temporal de longo alcance ou memória, o que é comum em processos
biológicos e físicos complexos.

A estrutura do trabalho segue com uma seção de resultados básicos e definições de derivadas
fracionária depois segue para apresentação dos Modelos Clássicos e com derivada fracionária de
Caputo e então apresentamos a construção da nossa proposta de fracionalizar o modelo de Sel’kov
e por fim temos resultados numéricos onde apresentaremos as soluções, trajetória de fase e pontos
de equilíbrio finalizando com as considerações finais.

2 Preliminares
Nesta seção, apresentaremos brevemente os conceitos e resultados fundamentais do cálculo fra-

cionário necessários para o desenvolvimento deste trabalho. Para uma discussão mais abrangente,
recomendamos consultar [1] e [7].
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Função Gama e Função Gama Incompleta:

Γ(z) =

∫ ∞

0

e−ttz−1dt; z ∈ C e γ(z, t) =

∫ t

0

e−ttz−1dt; z ∈ C (1)

Integral de Riemann-Liouville: A integral fracionária de Riemann-Liouville com ordem α
é definida para t ∈ [a, b] por:

Iαa+f(t) =
1

Γ(α)

∫ t

a

(t− θ)α−1f(θ)dθ. (2)

onde Γ é a função Gama.
Derivada de Riemann-Liouville: A derivada fracionária de Riemann-Liouville com ordem

α é definida para t ∈ [a, b] por:

RL
a Dα

t f(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

f(θ)

(t− θ)α−n+1
dθ . (3)

onde Γ é a função Gama.
Derivada de Caputo: A derivada fracionária de Caputo com ordem α é definida para

t ∈ [a, b] por:
C
a D

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− θ)n−α−1 dn

dθn
f(θ)dθ . (4)

onde Γ é a função Gama. Duas propriedades úteis para a derivada de Caputo é que a derivada
de Caputo de uma constante não nula é zero e que as condições iniciais de um problema de valor
inicial são as mesmas quando usado a derivada de Caputo.

Função de Mittag-Leffler com um, dois e três parâmetros: Seja z ∈ C e α, β ∈ C, ρ ∈ R
três parâmetros tais que Re(α) > 0,Re(β) > 0, ρ > 0. Definimos a função de Mittag-Leffler com
três parâmetros através da série de potência

Eρ
α,β(z) =

∞∑
k=0

(ρ)k
Γ(αk + β)

zk

k!
, (5)

onde (ρ)k é o símbolo de Pochhammer. Particularmente, quando ρ = 1, temos a função Mit-
tag–Leffler de dois parâmetros, denotada simplesmente por E1

α,β(t) = Eα,β(t). Já quando ρ = β =

1, obtemos a função Mittag-Leffler de um parâmetro, denotada por E1
α,1(t) = Eα,1(t) = Eα(t).

A Transformada de Laplace da integral fracionária de Riemann-Liouville é dada
por:

L[Iα0+f(t)](s) = s−αL[f(t)](s). (6)

A Transformada de Laplace da derivada fracionária de Riemann-Liouville é dada
por:

L[RLDα
0+f(t)](s) = sαL[f(t)](s)−

n−1∑
k=0

sn−1−kg(k)(0), (7)

onde g(t) = In−α
0+ f(t). Se f(t) é contínua, então g(k)(0) = 0, e o somatório é nulo.

A Transformada de Laplace da derivada fracionária de Caputo é dada por:

L[C0 Dα
t f(t)](s) = sαL[f(t)](s)−

n−1∑
k=0

sα−1−kf (k)(0). (8)

A Transforma de Laplace para da função tβ−1Eρ
α,β(λt

α), com t ∈ [0,∞], é dada por:

L[tβ−1Eρ
α,β(λt

α)](s) = s−β(1− as−α)−ρ, onde |as−α| < 1. (9)
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3 O Modelo de Sel’kov
O modelo de Sel’kov [8], descreve oscilações nas concentrações de adenosina difosfato (ADP) e

frutose-6-fosfato (F6P) durante a glicólise. Em sua forma adimensional, as equações são{
X ′ = −X +aY + bX2Y , X(0) = X0

Y ′ = V −aY − bX2Y , Y (0) = Y0
(10)

onde X e Y representam as concentrações de ADP e F6P, a > 0, b > 0 , V > 0 são parâmetros
cinéticos e com condições iniciais X0 > 0 e Y0 > 0. O ponto crítico é

Xe = V e Ye =
V

a+ bV 2
.

3.1 Modelo de Sel’kov em Derivada de Caputo
No artigo [6], o autor propôs uma generalização do sistema dinâmico de Sel’kov em derivada

fracionária de Caputo para incluir efeitos de hereditariedade(memoria), onde o sistema "lem-
bra"influências passadas ao longo do tempo.

1

σ
1−α1
1

C
Dα1(X) = −X +aY + bX2Y , X(0) = X0

1

σ
1−α2
2

C
Dα2(Y ) = V −aY − bX2Y , Y (0) = Y0

(11)

onde CDαi [y(t)] = 1
Γ(1−αi)

∫ x

0
y′(τ)

(x−τ)αi
dτ e Γ(.) função Gama, é a derivada de Caputo de ordem

αi ∈ (0, 1] , i ∈ {1, 2} e o parâmetro positivo σ1,2 tem a dimensão do tempo.
Observe que os valores dos pontos críticos nos modelos (10) e (11) são os mesmos independente

dos parâmetros α1,2 e σ1,2. Nos resultados numéricos usaremos σ1,2 = 1.

4 Modelo de Sel’kov em Derivada de Riemann-Liouville
A proposta de apresentar o modelo de Sel’kov em derivadas fracionária, se baseia em definir

um operador fracionário a partir de uma EDO, com o objetivo de obter as equações diferenciais
fracionárias de forma construtiva como proposto em [4] e [5]. Considere o seguinte problema de
valor inicial: {

y′(t) = −ry(t) + g(t)

y(0) = y0
⇐⇒ y(t) =

∫ t

0

e−r(t−τ)g(τ)dτ + y0e
−rt (12)

Neste caso, chamamos a função f(t) = e−rt de núcleo da EDO, ver [4]. Gostaríamos de estudar o
que aconteceria com a equação se o seu núcleo fosse alterado. Mais especificamente, gostaríamos
de encontrar uma função para a qual pudéssemos escrever uma Equação Diferencial Fracionária.
Com esse objetivo, definimos o núcleo como sendo K(t) = e−r1tEα(−rα2 t

α), com r1+r2 = 1. Desta
forma, obtemos:

y(t) =

∫ t

0

e−r1(t−τ)Eα(−rα2 (t− τ)α)g(τ)dτ + y0e
−r1tEα(−rα2 t

α) (13)

A partir da expressão (13), utilizamos as propriedades da função de Mittag-Leffler e a transformada
de Laplace para obter a equação (14). Maiores detalhes podem ser encontrados em [5].

y′(t) = g(t)− r1y(t)− rα2 e
−r1t RLD1−α

[
er1ty(t)

]
(14)
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A ideia de utilizar derivadas fracionárias em modelos é bastante comum, e em grande parte dos
casos isso ocorre substituindo a derivada clássica por uma de ordem não inteira. Nesta construção
podemos criar modelos fracionários apenas usando funções núcleos diferentes. Agora vamos para
nosso modelo de Sel’kov em derivadas fracionárias utilizando está técnica.{

X ′ = −r1X +aY + bX2Y −rα1
2 e−r1tD1−α1(er1tX)

Y ′ = V − a1Y − bX2Y −aα2
2 e−a1tD1−α2(ea1tY )

(15)

onde D1−αi [.], é a derivada fracionária de Riemann-Liouville de ordem 1−αi ∈ [0, 1], i ∈ {1, 2}, com
r1+r2 = 1 , θ1+θ2 = 1 , a1 = aθ1 , a2 = aθ2 e 0 < r1, r2, θ1, θ2 < 1. Para o Modelo (15) o equilíbrio
assintótico lim

t→+∞
(X(t), Y (t)) = (Xe, Ye) é obtido usando lim

t→+∞
e−λtD1−α2(eλtX) = λ1−αXe, ver

[5]. Assim podemos obter o polinômio cúbico P (Xe), e sua raiz real será o ponto de equilíbrio Xe

(r = r1 + rα1
2 r1−α1

1 e θ = θ1 + θα2
2 θ1−α2

1 ).

P (Xe) = X3
e − V

r
X2

e +
aθ

b
Xe −

V a

r
= X2

e (Xe −
V

r
) +

aθ

b
(Xe −

V

rθ
) e Ye =

V

aθ + bX2
e

,

observe que P (Vr ) =
aV
br (θ − 1) e P ( V

rθ ) =
V 3

r3θ3 (1− θ) segue P (Vr ).P ( V
rθ ) = − V 4

r4bθ (1− θ)2 < 0.

Portanto, temos sempre uma raiz real entre os valores V
r e V

rθ . Observe que para θ = 1 e r = 1 o
valor do equilíbrio dos três Modelos são os mesmos e isto ocorre para os casos das ordens, α1,2 = 1
das derivadas fracionárias caso trivial, ou quando r1 = r2 = θ1 = θ2 = 1

2 e neste caso vale para
qualquer valor de α1,2 ∈ (0, 1). Não faremos um estudo da estabilidade do ponto de equilíbrio,
mas apresentaremos a matriz jacobina associada aos três modelos. Para (10) e (11) temos:

J =

(
−1 + 2bXeYe a+ bX2

e

−2bXeYe −(a+ bX2
e )

)
e JC =

(
−σ1 + 2σ1bXeYe σ1(a+ bX2

e )
−2σ2bXeYe −σ2(a+ bX2

e )

)
, (16)

onde σ1 = σ1−α1
1 e σ2 = σ1−α2

2 . Nas simulações usaremos σ1 = σ2 = 1 como feito em [6], e neste
caso temos que as matrizes jacobianas dos modelos (10) e (11) são iguais, J = JC . Agora, para
obter a parte linear do modelo (15) vamos fazer a seguinte mudança X = X+Xe e Y = Y +Ye,
no modelo (15).{

(X +Xe)
′ = −r1(X +Xe) + a(Y + Ye) + b(X +Xe)

2(Y + Ye)− rα1
2 e−r1tD1−α1(er1t(X +Xe))

(Y + Ye)
′ = V − a1(Y + Ye)− b(X +Xe)

2(Y + Ye)− aα2
2 e−a1tD1−α2(ea1t(Y + Ye))

e assim obtemos{
X

′
= (−r1 + 2bXeYe)X + (a + bX2

e )Y + F (X,Y )− rα1
2 e−r1tD1−α1(er1tX) + f1(t)

Y
′
= −2bXeYeX − (a1 + bX2

e )Y − F (X,Y )− aα2
2 e−a1tD1−α2(ea1tY ) + f2(t)

onde o termo não linear é F (X,Y ) = bX
2
Y +2bXY Xe+bX

2
Ye e das relações do ponto de equilíbrio

assintótico do modelo (15), temos as seguintes funções: f1(t) = Xe(r
α1
2 r1−α1

1 −rα1
2 e−r1tD1−α1(er1t))

e f2(t) = Ye(a
α2
2 a1−α2

1 − aα2
2 e−a1tD1−α2(ea1t)). Por tanto a parte linear de (15) é dado por

JRL =

(
−r1 + 2bXeYe a+ bX2

e

−2bXeYe −(a1 + bX2
e )

)
. (17)

Observe que o modelo (15) não é autônomo e para obter as funções f1(t) e f2(t) basta fazer:
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e−r1t RLD1−α
[
er1t

]
= L−1L

[
e−r1t RLD1−α

[
er1t

]]
= L−1

[
(s+ r1)

s(s+ r1)α

]
= L−1

[
1 + r1

s

(s+ r1)α

]
= L−1

[
1

(s+ r1)α
+ r1

1

s

1

(s+ r1)α

]
= L−1

[
1

(s+ r1)α

]
+ r1L−1

[
1

s

1

(s+ r1)α

]
= L−1

[
L
[
e−r1t

tα−1

Γ(α)

]]
+ r1L−1

[
L
[

1

Γ(α)

∫ t

0

τα−1e−r1τdτ

]]
= e−r1t

tα−1

Γ(α)
+

r1
Γ(α)

∫ t

0

τα−1e−r1τdτ = e−r1t
tα−1

Γ(α)
+

r1
Γ(α)

γ(α, t) = h(α, t).

No artigo de Zacher [9] e Luchko [2], temos uma descrição desta função h(α, t) e suas propriedades
aplicado ao calculo fracionário. Passando para as funções

f1(t) = Xe[r
α1
2 r1−α1

1 − rα1
2 (e−r1t

tα1−1

Γ(α1)
+

r1
Γ(α1)

∫ t

0

τα1−1e−r1τdτ)]

f2(t) = Ye[a
α2
2 a1−α2

1 − aα2
2 (e−a1t

tα2−1

Γ(α2)
+

a1
Γ(α2)

∫ t

0

τα2−1e−a1τdτ)],

destacamos aqui a seguinte propriedade

lim
t→+∞

f1(t) = 0 e lim
t→+∞

f2(t) = 0.

Esta técnica de fracionalizar o modelo (10), como foi descrita aqui, de forma bem simples e direta
pode ser vista com mais detalhes nos artigos [4] e [5]. Para um estudo da estabilidade do modelo
(15) um caminho a ser tomado, seria adaptar as contas feitas em [3].

5 Simulação Numérica
Na simulações utilizaremos o esquema L1 numérico para discretizar os modelos (11) e (15).

Nas duas discretização quando α1,2 = 1 temos a discretização para o caso clássico (10), diferenças
finitas. O intervalo de tempo [0, T ] é discretizado como 0 = t0 < t1 < < tn = T , onde os passos
de tempo ∆ti = ti+1 − ti, para i ∈ {0, ..., n − 1}, têm o mesmo tamanho ∆t = 0.01 e T = 200.
Considerando os valores de αi, ri, θi ∈ (0, 1] com i ∈ 1, 2 e os valores dos parâmetros, a, b e V ,
todos serão indicados nos gráficos.

Figura 1: Valores de a = 0.116, b = 0.602 e V = 0.64421. Fonte: Autor.
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Na Figura 1-(a), vemos as oscilações das soluções porem como podemos verificar no caso do
modelo (11) as oscilações diminuem rapidamente o que indica o não aparecimento de ciclos limites,
enquanto no modelo (15) elas são sustentadas por mais tempo. Já na Figura 1-(b) temos o plano
de fase e podemos ver que pontos de equilíbrio são diferentes e vemos o ciclo limite para o caso do
modelo (10).

Figura 2: Valores de a = 0.03 , b = 1.3 e V = 0.6. Fonte: Autor.

Na Figura 2-(a), temos o plano de fase das soluções dos três modelos, onde em preto é o caso
clássico modelo (10) e aparece o ciclo limite já para os modelos (11) e (15) não temos mais os ciclos
limites, mas para todos os três modelos o ponto de equilíbrio é o mesmo. Na Figura 2-(b) temos o
plano de fase para os três modelos e além de terem os mesmos pontos de equilíbrio nos três casos
temos os ciclos limites.

Figura 3: Valores de a = 0.03 , b = 1.3 e V = 0.6. Fonte: Autor.

Na Figura 3-(a), temos as soluções dos modelos (11) e (15) onde vemos que em ambos os casos
não aparece o regime oscilatório o que indica o não aparecimento do ciclo limite, como pode ser
visto na Figura 3-(b) e ainda eles apresentam pontos de equilíbrio diferentes.
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6 Conclusões Finais
Apresentamos uma forma alternativa para escrever o modelo de Sel’kov na forma fracionária.

Está maneira nos levou ao operador de Riemann-Liouville e a um sistema não autônomo o que
dificulta o estudo de estabilidade do ponto de equilíbrio. Mas pelas simulações verificamos, alguns
casos, a presença de regimes regulares, caracterizados por ciclos limites estáveis no plano de fase,
que indicam comportamentos auto-oscilatórios. Vimos também que estes regimes não era mantido
quando tomávamos o modelo (11), enquanto para nosso modelo (15) ainda era mantido. O ponto de
equilíbrio dos modelos (10) e (11) são os mesmos independente dos parâmetros α1,2 e σ1,2 enquanto
para o modelo (15) o ponto de equilíbrio depende fortemente dos parâmetros α1,2, r1 e a1. Com esta
pequena análise comparativa entre as três versões do modelo de Sel’kov, vimos que a utilização
de derivadas fracionárias permite capturar comportamentos mais complexos e dependentes do
histórico do sistema. A comparação numérica usando o método L1 fornece insights sobre como
as diferentes formulações do modelo afetam a dinâmica das oscilações. Estamos confiante de que
este modelo (15) merece um estudo mais aprofundado, entendemos que ele pode oferecer uma
compreensão mais ampla da dinâmica do Modelo de Sel’kov. Assim, a modelagem fracionária
sacrifica algumas propriedades convencionais, mas ganha poder descritivo em sistemas complexos.
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