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Resumo. No presente trabalho, apresentamos trés versées do modelo de Sel’kov(1968 [8]). A
versdo cléassica, usado para descrever oscilagdes glicoliticas, uma versdo em derivada fracionaria
de Caputo, dada em [6], que foi usada para descrever fenémenos microssismicos e nossa proposta
em derivadas fracionarias baseado na técnica apresentado em [4] e [5] onde teremos o operador
de Riemann-Liouville presente no modelo. Usando o método numérico L1, apresentaremos uma
comparagao das trés formas do modelo de Sel’kov exibindo as solugoes, trajetérias de fase e pontos
de equilibrio.

Palavras-chave. Modelo de Sel’kov, Derivada Fracionaria de Caputo, Derivada Fracionaria de
Riemann-Liouville, Sistema n&o Linear e Sistemas Fracionéarios.

1 Introducao

O modelo de Sel’kov é um sistema dindmico nao linear proposto para descrever oscilagoes
glicoliticas em sistemas bioquimicos, especificamente envolvendo substratos e produtos. Ele é
conhecido por exibir comportamentos auto-oscilatorios, o que o torna util para modelar fend6menos
como as vibragoes glicoliticas. Originalmente, o modelo foi aplicado em biologia, mas também tem
sido adaptado para descrever fendmenos microssismicos. A versio fracionaria do modelo de Sel’kov
incorpora a influéncia da hereditariedade (memoria) no sistema, o que é feito utilizando derivadas
fracionarias no sentido de Caputo. Derivadas fracionérias sao particularmente tteis para modelar
sistemas com dependéncia temporal de longo alcance ou memoria, o que é comum em Processos
biolégicos e fisicos complexos.

A estrutura do trabalho segue com uma secao de resultados basicos e defini¢oes de derivadas
fracionaria depois segue para apresentagdo dos Modelos Classicos e com derivada fracionaria de
Caputo e entao apresentamos a construgao da nossa proposta de fracionalizar o modelo de Sel’kov
e por fim temos resultados numeéricos onde apresentaremos as solugoes, trajetoria de fase e pontos
de equilibrio finalizando com as consideragoes finais.

2 Preliminares

Nesta secao, apresentaremos brevemente os conceitos e resultados fundamentais do calculo fra-
cionario necessarios para o desenvolvimento deste trabalho. Para uma discussao mais abrangente,
recomendamos consultar [1] e [7].

Isandro.mazorche@uff.br
2esther.scarton@estudante.ufjf.br
3tiago.santos@estudante.ufjf.br

DOI: 10.5540/03.2026.012.01.0265 010265-1 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0265

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

Funcgao Gama e Funcao Gama Incompleta:
00 t
I'(z) = / et Tt 2€C e (2 t) = / et dt; 2 €C (1)
0 0

Integral de Riemann-Liouville: A integral fracionaria de Riemann-Liouville com ordem «
¢ definida para ¢ € [a, b] por:

12, 1(t) = ﬁ / (t— 0)* 1 £(6)do. 2)

onde I' é a funcao Gama.

Derivada de Riemann-Liouville: A derivada fracionaria de Riemann-Liouville com ordem
« é definida para t € [a, b] por:

wpn . Lodm ot f(0)
LD f(t) = mdt"/a W‘w- (3)

onde I é a fungao Gama.
Derivada de Caputo: A derivada fracionaria de Caputo com ordem « é definida para
t € [a,b] por:
T p— tt oy 1L 1 (g)d0 4
EDPI0) = pomay | (=00 G 0)as. (W
onde I' é a funcao Gama. Duas propriedades tuteis para a derivada de Caputo é que a derivada
de Caputo de uma constante nao nula é zero e que as condigoes iniciais de um problema de valor
inicial sao as mesmas quando usado a derivada de Caputo.
Funcao de Mittag-Leffler com um, dois e trés parametros: Sejaz € Cea,f € C,p e R
trés pardmetros tais que Re(a) > 0,Re() > 0,p > 0. Definimos a fungdo de Mittag-Leffler com
trés parametros através da série de poténcia

Bapl2) = kz;; r<on)_'i B E (5)

onde (p)ix & o simbolo de Pochhammer. Particularmente, quando p = 1, temos a fungao Mit-
tag—Leffler de dois parametros, denotada simplesmente por Ecly 5(t) = Eq p(t). Jd quando p = 3 =
1, obtemos a fungao Mittag-Leffler de um parametro, denotada por Eéﬁl(t) = E,1(t) = Eu(t).

A Transformada de Laplace da integral fracionaria de Riemann-Liouville é dada

por:
LU, f(1)](s) = sTLIf(1)](s). (6)
A Transformada de Laplace da derivada fracionaria de Riemann-Liouville é dada
por:
n—1
LIFDg, F(](s) = s“LIF()](s) = Y 5" Fg™(0), (7)
k=0

onde g(t) = Iy’ f(t). Se f(t) é continua, entdo g'¥)(0) = 0, e o somatoério & nulo.
A Transformada de Laplace da derivada fracionaria de Caputo é dada por:

L[5 DY F(B))(s) = s“LIF(B))(s) — Z_: s* 1R F0(0). (8)
k=0

A Transforma de Laplace para da funcao tﬁflEgﬁ (At*), com t € [0, 0], &€ dada por:
E[tﬁflEgﬁ()\to‘)}(s) =5 A1 —as™) ", onde |as™| < 1. 9)
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3 O Modelo de Sel’kov

O modelo de Sel’kov [8], descreve oscilagoes nas concentragdes de adenosina difosfato (ADP) e
frutose-6-fosfato (F6P) durante a glicolise. Em sua forma adimensional, as equagoes sado

{ X'= —X +aY +bX2%Y | X(0)= X,

Y= V —aY —bX2Y | Y(0)=Y, (10)

onde X e Y representam as concentragdes de ADP e F6P, a > 0, b > 0, V > 0 s@o parametros
cinéticos e com condigoes iniciais Xy > 0 e Yy > 0. O ponto critico é

Vv

X,=V e YVy= ——
¢ a+ bV?2

3.1 Modelo de Sel’kov em Derivada de Caputo

No artigo [6], o autor prop6s uma generalizagdo do sistema dindmico de Sel’kov em derivada
fracionaria de Caputo para incluir efeitos de hereditariedade(memoria), onde o sistema "lem-
bra"influéncias passadas ao longo do tempo.

—L_DM(X)= —X +4aY +bX2Y | X(0)=X,
71 11
L_“Dex(y)= V —a¥ -bX2%Y , Y(0)=Y, 1

T—ag
To

onde CD [y(t)] = F(liai) fox (Zy,/(:))al dr e T'(.) funcdo Gama, é a derivada de Caputo de ordem
a; € (0,1], i € {1,2} e o parametro positivo o1 2 tem a dimensdo do tempo.
Observe que os valores dos pontos criticos nos modelos (10) e (11) sdo os mesmos independente

dos parametros a2 e 01,2. Nos resultados numéricos usaremos oy 2 = 1.

4 Modelo de Sel’kov em Derivada de Riemann-Liouville

A proposta de apresentar o modelo de Sel’kov em derivadas fracionéria, se baseia em definir
um operador fracionario a partir de uma EDO, com o objetivo de obter as equagoes diferenciais
fracionarias de forma construtiva como proposto em [4] e [5]. Considere o seguinte problema de
valor inicial:

y/(t) = —’I"y(t) + g(t) _ K e—r(t—'r) Adr e—rt
{y(o) - = )= [ g (12)

Neste caso, chamamos a fungao f(t) = e~ de nicleo da EDO, ver [4]. Gostarfamos de estudar o
que aconteceria com a equacdo se o seu nucleo fosse alterado. Mais especificamente, gostariamos
de encontrar uma fungao para a qual pudéssemos escrever uma Equagao Diferencial Fracionéria.
Com esse objetivo, definimos o niicleo como sendo K (t) = e "t E, (—r$t%), com r1 +75 = 1. Desta
forma, obtemos:

1) = [ e (5= ) () + e B () (13)

A partir da expressao (13), utilizamos as propriedades da fun¢ao de Mittag-Leffler e a transformada
de Laplace para obter a equagao (14). Maiores detalhes podem ser encontrados em [5].

Y'(t) = g(t) —riy(t) — rge ™ FEDIT [enty(t)] (14)
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A ideia de utilizar derivadas fracionarias em modelos é bastante comum, e em grande parte dos
casos isso ocorre substituindo a derivada cléssica por uma de ordem nao inteira. Nesta construcao
podemos criar modelos fracionarios apenas usando fungoes nucleos diferentes. Agora vamos para
nosso modelo de Sel’kov em derivadas fracionérias utilizando esta técnica.

Y= V. —aY —bX%Y —afre DT (emtY) (15)

{ X' = —rmX +4aY +bX2%Y —rgte Mt plmar(ent X)
onde D' [ ], é a derivada fracionéria de Riemann-Liouville de ordem 1—q; € [0, 1], € {1, 2}, com
ri+ro=1,014+02=1,a1 =ab;, a2 =abye0 < r1,7r9,01,02 < 1. Para o Modelo (15) o equilibrio
assintético ligl (X(t),Y(t)) = (X.,Y.) é obtido usando , 1i14p e MDImo2(AMX) = \17OX, | ver

——+o0 —+o0

[5]. Assim podemos obter o polindmio cibico P(X,), e sua raiz real serd o ponto de equilibrio X,
(r=ri+r3ir{ % e =06 + 6320, ).

1% af Va V. af 1% 1%
PX)=X>——X?+""X.——=X*(X,— )+ —(X.— — Y, = ——s
(Xe) ¢ et b e (Xe r)+ b( ¢ 7‘0) ¢ te af +bX2’

observe que P(¥) = 29 — 1) e P(¥) = Y25 (1 — 6) segue P(¥).P(¥) = - V(1 -0)% <0.

Portanto, temos sempre uma raiz real entre os valores % e %. Observe que parad =1ler =10
valor do equilibrio dos trés Modelos sdo os mesmos e isto ocorre para os casos das ordens, a2 =1
das derivadas fracionérias caso trivial, ou quando ry = r9 = 61 = 0 = % e neste caso vale para
qualquer valor de a1 € (0,1). Nao faremos um estudo da estabilidade do ponto de equilibrio,

mas apresentaremos a matriz jacobina associada aos trés modelos. Para (10) e (11) temos:

J— -1+ 2bX.Y, a—|—bX€2 T — —0o1 + 201X, Y, 0'1((1+ng) (16

—\ —wXx.y, —(a+bXx?) ) ¢ JC7 —202bX,Y,  —oa(a+bX2) )’ )
onde o7 = cr%_a1 e oy = cr;_az. Nas simulagbes usaremos o1 = 09 = 1 como feito em [6], e neste
caso temos que as matrizes jacobianas dos modelos (10) e (11) sdo iguais, J = Jo. Agora, para
obter a parte linear do modelo (15) vamos fazer a seguinte mudanca X = X +X, e Y =Y +Y,,
no modelo (15).

(X + X0 = =n(X 4+ X0) 4 al(V + ) £ 5(X + X)*(V +Y0) = r5le DI (e (X + X))
T +Y.) = V- a(Y +Y.) = b(X + X)2(Y +Y,) — aS?e- 41t D=2 (¢t (¥ +Y,))

e assim obtemos

{ X' = (—r + 26X.Y)X + (a + bX2)Y + F(X,Y) — r$"e "1t D=1 ("0 X) + fy (L)
/

T2
Y = —20X. Y. X — (a1 + bX2)Y — F(X,Y) — ay?e~ D=2 (emtY) 4 fo(t)
onde o termo ndo linear ¢ F(X,Y) = by27+2bWXe+by2Ye e das relacoes do ponto de equilibrio

assintotico do modelo (15), temos as seguintes funcées: f1(t) = X (rgtri “ —rgte "1t D=1 (e"1t))
e fo(t) = Yo(aS?ai 2 — ay2e~ 1t D1=22(¢%1t)). Por tanto a parte linear de (15) é dado por

_ 2
Tnp = ( r + 2bX.Y, a+bX; ) (17)

—%X.Y.,  —(a1 +bX2)

Observe que o modelo (15) néo ¢ autéonomo e para obter as fungdes fi(t) e f2(t) basta fazer:
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—rit RLyl—a [,rt] _ p—1 —rit RL pyl—a [ rit]] _ p—1 (s+71) _ -1 1+Tsl]
et RL 1= [grit] = £=1p [o=rit RLpi=o [orif]] — £ L(SJFH)&}_E [(Hﬁ)a

e e P e
=L [C {ettr(a)” +rL7! {L [r(la)/o Talede”

s [ Cromtemnigr — et T~ hay)
OREYC) OT e T=c¢ T Ty (@ 1) = hlas?).

—rit

No artigo de Zacher [9] e Luchko [2], temos uma descri¢ao desta fun¢ao h(a,t) e suas propriedades
aplicado ao calculo fracionério. Passando para as funcoes

- t
i) = Xe[rgrr ™™ =gt (e e + o / 71T 7))
F(al) F(Oél) 0

tag—l
f2(t) = Yelag?a; ™ — ag?(e” ™"

t
ay as—1_—aiT
+ T e M7 dT))],
Iaz) T(a2) /o )

destacamos aqui a seguinte propriedade
Jm filt)=0 e Jm fa(t) = 0.
Esta técnica de fracionalizar o modelo (10), como foi descrita aqui, de forma bem simples e direta

pode ser vista com mais detalhes nos artigos [4] e [5]. Para um estudo da estabilidade do modelo
(15) um caminho a ser tomado, seria adaptar as contas feitas em [3].

5 Simulacao Numérica

Na simulagoes utilizaremos o esquema L1 numérico para discretizar os modelos (11) e (15).
Nas duas discretizagdo quando aj 2 = 1 temos a discretizagdo para o caso classico (10), diferencas
finitas. O intervalo de tempo [0, 7] é discretizado como 0 =ty < t; < < t, = T, onde os passos
de tempo At; = t;11 — t;, para i € {0,...,n — 1}, tém o mesmo tamanho At = 0.01 e T" = 200.
Considerando os valores de «;,7;,0; € (0,1] com i € 1,2 e os valores dos parametros, a, b e V|
todos serao indicados nos graficos.

Parametros: a, = 0.85, a,= 0.95, ry= 08e 01 =0.8 Parametros: a, = 0.85 a,= 095, = 08e 91 =0.8

Caputo: X(t) em azul , Y(t) em verde Modelos: (1) Preto ; (2) Azul ; (3) vermelho Xe= 0.6442 Ye= 1.761
Riemann Liouville Vermelho Xe= 0.6128 Ye= 1.874

5% Riemann Liouville: X(t) em vermelho , Y(t) em preto

25

X(t), Y(t)

0 20 40 60 80 100 120 140 160 180 200 03 04 0.5 0.6 0.7 08 0.9 1 14
t X(t)

Figura 1: Valores de a = 0.116, b = 0.602 e V = 0.64421. Fonte: Autor.
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Na Figura 1-(a), vemos as oscilagoes das solugdes porem como podemos verificar no caso do
modelo (11) as oscilagdes diminuem rapidamente o que indica o ndo aparecimento de ciclos limites,
enquanto no modelo (15) elas sdo sustentadas por mais tempo. Ja na Figura 1-(b) temos o plano
de fase e podemos ver que pontos de equilibrio sao diferentes e vemos o ciclo limite para o caso do
modelo (10).

Parametros: o, = 0.8 o, = 0.8, r= 0.5,

0 =05e PC.: Xe= 0.6442 Ye= 1.761. Parametros: o, =09 a,=09,r,=05e06,=05
1 Modelos: (1) Preto ; (2) Azul ; (3) vermelho Xe= 0.6 Ye= 1.205
Riemann Liouville Vermelho Xe= 0.6 Ye= 1.205
T T T T T T

Modelos

: (1) preto, (2) azule (3) vermelho.

“0.4 0.5 06 0.7 0.8 09 1 a
X(t) X

35

Figura 2: Valores de a = 0.03 ,b=1.3 e V = 0.6. Fonte: Autor.

Na Figura 2-(a), temos o plano de fase das solugoes dos trés modelos, onde em preto é o caso
classico modelo (10) e aparece o ciclo limite ja para os modelos (11) e (15) ndo temos mais os ciclos
limites, mas para todos os trés modelos o ponto de equilibrio é o mesmo. Na Figura 2-(b) temos o
plano de fase para os trés modelos e além de terem os mesmos pontos de equilibrio nos trés casos
temos os ciclos limites.

Graficos para oy =075 o, = 0.85 Parametros: a, =0.75 o, =0.85,r, =03 e 0, =0.5
Caputo: X(t) em azul , Y(t) em verde 1 2 1 1
Ri Liouville: X(t) em vermelho , Y(t) em preto Modelo (2) azul: Xe= 0.6442 Ye= 1.761
. Modelo (3) vermelho Xe= 0.7436 Ye= 1.435
G
2
n1 5 18
2 -
% ol g 16
\
‘\I "\ g 1.4 \
l
J 1.2 \
0.5 /
. 5 7 1 —=
0 20 40 60 80 100 120 140 160 180 200 02 . 1 1.2
L X(t)

Figura 3: Valores de a = 0.03 , b=1.3 e V = 0.6. Fonte: Autor.

Na Figura 3-(a), temos as solugoes dos modelos (11) e (15) onde vemos que em ambos o0s casos
nao aparece o regime oscilatorio o que indica o nao aparecimento do ciclo limite, como pode ser
visto na Figura 3-(b) e ainda eles apresentam pontos de equilibrio diferentes.
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6 Conclusoes Finais

Apresentamos uma forma alternativa para escrever o modelo de Sel’kov na forma fracionaria.
Esta maneira nos levou ao operador de Riemann-Liouville e a um sistema nao auténomo o que
dificulta o estudo de estabilidade do ponto de equilibrio. Mas pelas simulacoes verificamos, alguns
casos, a presenca de regimes regulares, caracterizados por ciclos limites estaveis no plano de fase,
que indicam comportamentos auto-oscilatorios. Vimos também que estes regimes nao era mantido
quando tomévamos o modelo (11), enquanto para nosso modelo (15) ainda era mantido. O ponto de
equilibrio dos modelos (10) e (11) s@o os mesmos independente dos parametros a; 2 € 01,2 enquanto
para o modelo (15) o ponto de equilibrio depende fortemente dos parametros a; 2, 71 € a1. Com esta
pequena analise comparativa entre as trés versdes do modelo de Sel’kov, vimos que a utilizagao
de derivadas fracionérias permite capturar comportamentos mais complexos e dependentes do
histérico do sistema. A comparagao numérica usando o método L1 fornece insights sobre como
as diferentes formulagoes do modelo afetam a dindmica das oscilagoes. Estamos confiante de que
este modelo (15) merece um estudo mais aprofundado, entendemos que ele pode oferecer uma
compreensdo mais ampla da dindmica do Modelo de Sel’kov. Assim, a modelagem fracionaria
sacrifica algumas propriedades convencionais, mas ganha poder descritivo em sistemas complexos.
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