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Resumo. O repertório do receptor de células T (TCR) exerce papel central na resposta imuno-
lógica, sendo a sua diversidade um indicador relevante do estado do sistema imune. No contexto
da leucemia, alterações nesse repertório podem refletir tanto a progressão da doença quanto a res-
posta ao tratamento. A complexidade do repertório de TCR torna a estimativa de diversidade um
problema essencial, embora computacionalmente desafiador. Medidas tradicionais, como a entropia
de Shannon e os números de Hill, capturam aspectos globais da distribuição, mas podem apresen-
tar limitações diante da variabilidade dos dados imunológicos. Nesse cenário, métodos baseados
em kernels têm se destacado como alternativas mais robustas. Neste trabalho, aplica-se o teste de
Discrepância Média Máxima (MMD), em conjunto com um método de kernel, para comparar as dis-
tribuições dos repertórios de TCR de pacientes com leucemia em diferentes estágios do tratamento.
Em contraste com abordagens clássicas, a metodologia proposta introduz um kernel ponderado por
frequência, capaz de capturar recorrências nas sequências e de adaptar a estatística MMD às par-
ticularidades dos dados imunológicos. Com base em uma avaliação empírica da similaridade entre
sequências, verifica-se que a abordagem empregada aprimora a distinção entre perfis leucêmicos e
não leucêmicos, contribuindo para a identificação de padrões imunológicos associados à progressão
da doença.

Palavras-chave. Leucemia linfoide aguda, discrepância média máxima, repertório do receptor de
células T.

1 Introdução
Estudos recentes mostraram que a caracterização da diversidade do repertório imune pode

ser utilizada para monitorar a resposta ao tratamento em pacientes com leucemia linfoide aguda
(LLA) [5, 12]. A quantificação dessa diversidade é tradicionalmente realizada por meio de índices,
como a entropia de Shannon [11] e os números de Hill [3], que medem a riqueza e a uniformidade.
No entanto, essas abordagens frequentemente ignoram relações estruturais entre sequências, o que
pode limitar a interpretação biológica dos dados [1, 4, 7].

A incorporação de métodos baseados em kernel tem se mostrado promissora na comparação de
distribuições de sequências biológicas [8]. Em particular, o teste de Discrepância Média Máxima
(MMD) tem sido aplicado na análise de diferenças entre distribuições de dados biológicos [6]. O
MMD permite comparar diretamente distribuições de repertórios imunes projetando as sequências
em um espaço de Hilbert e calculando uma medida de distância entre elas.

Neste estudo, explora-se a aplicação da MMD para quantificar a diversidade do repertório do
receptor de células T em pacientes com LLA. Para isso, é empregada uma combinação de kernels
modificados, integrando o kernel de espectro [8] com um kernel gaussiano adaptado por frequência,
com o objetivo de aprimorar a precisão na classificação dos estados leucêmicos dos pacientes.
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2 Sequências Biológicas

Inicialmente, apresentam-se alguns aspectos biológicos relevantes para o estudo. Conforme
discutido na introdução, os índices de diversidade convencionais consideram apenas a frequência
das sequências, o que pode limitar a interpretação biológica. Para obter uma estimativa mais
realista da diversidade, torna-se essencial definir uma medida de similaridade — como a proposta
em [8] — que vá além da simples contagem de ocorrências, permitindo capturar relações estruturais
entre as sequências.

Definição 2.1. A sequência de nucleotídeos do DNA é uma sequência de caracteres definida
em um alfabeto AN = {A,C,G, T}. As letras A,C,G e T , representam os nucleotídeos, respecti-
vamente, adenina, citosina, guanina e timina.

Definição 2.2. A frequência da sequência biológica si num repertório R é

pi =
o(si)

Número total de sequências
, (1)

com o(si) := número de ocorrências de si em R.

A doença residual mínima (MRD) refere-se à presença de células leucêmicas remanescentes em
níveis indetectáveis por avaliação morfológica convencional da medula óssea. Sua análise é essencial
para monitorar a resposta ao tratamento e prever o risco de recaída.

2.1 Quantificação das Sequências Biológicas

Definição 2.3. Um k-mer é uma subsequência de comprimento k contida em uma sequência
biológica.

Definição 2.4. Dado k ≥ 1, o espectro k de uma sequência biológica s é o conjunto de todos os
k−mers de comprimento k que ela contém. O conjunto é denotado por σk(s).

Definição 2.5. Para cada k-mer α ∈ Σk, a coordenada indexada por α (ou seja, ϕα(s)) será
o número de vezes em que α ocorre em uma sequência s. Isso fornece o mapa de características
do espectro k, Φk : S → Rlk :

Φk(s) = (ϕα(s))α∈Ak ,

com ϕα : S → R, ϕα(s) = número de ocorrências de α em x, A o alfabeto de tamanho |A| = l e
Ak = A× · · · × A︸ ︷︷ ︸

k−vezes

.

Definição 2.6. O kernel do espectro k para duas sequências s1 e s2 é dado pelo produto interno
no espaço de características:

Kk(s1, s2) := ⟨Φk(s1),Φk(s2)⟩. (2)

Neste estudo, busca-se um kernel que apresente maior capacidade de generalização, seja com-
putacionalmente eficiente e possua maior suavidade — especialmente em razão da natureza dis-
cretizada da teoria empregada. Conforme discutido em [2], o kernel na Definição 2.6 apresenta
limitações significativas: não generaliza bem para dados não vistos e falha em capturar similari-
dades parciais. Em particular, duas sequências com pequenas variações podem ser biologicamente
muito semelhantes, mas esse kernel tradicional as considera completamente distintas. Para superar
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essa limitação, adota-se o kernel modificado proposto em [2], que aprimora a capacidade de detec-
ção de semelhanças estruturais e oferece maior flexibilidade na modelagem dos dados. O kernel
modificado é dado por

K̂k(s1, s2) = ⟨Φk(s1),Φk(s2)⟩ · exp(−γ) + λ · exp
(
−∥Φk(s1)− Φk(s2)∥2

2σ2

)
, (3)

com λ, γ, σ > 0.
A seguir, definem-se os elementos básicos da teoria necessários à aplicação e à avaliação da

MMD.

Definição 2.7. Sejam Si o conjunto de sequências biológicas da amostra i e S o conjunto
de todas as sequências biológicas na base de dados, ou seja, a união dos Si.

Proposição 2.1. Seja

ηi(B) :=
∑
sr∈B

oi(sr)

Ni
, (4)

para todo B ⊆ Si, com oi o número de ocorrências da sequência sr ∈ Si e Ni =
∑|Si|

l=1 oi(sl) o
número total de sequências em Si. A tripla (Si, ℘(Si), ηi) é um espaço de medida.

Proposição 2.2. Sejam (Si, ℘(Si), ηi) um espaço de medida, f uma função mensurável, x uma
variável aleatória com distribuição dada por ηi e s1, . . . , sn observações independentes com distri-
buição dada por ηi. A estimativa empírica de f é

E[f(x)] =
1

Ni

n∑
j=1

f(sj) · oi(sj) (5)

com Ni o número total de sequências em Si.

3 MMD para Sequências Biológicas

A seguir, estabelece-se a base teórica do teste estatístico empregado. O estatístico do teste
proposto por Gretton et al. [6] é definido como o maior valor absoluto da diferença entre as expec-
tativas de funções pertencentes à bola unitária de um espaço de Hilbert reproduzível (RKHS). Essa
formulação permite quantificar discrepâncias entre distribuições de forma robusta, sem a necessi-
dade de suposições paramétricas. Além disso, pela Proposição 2.11 de [9], que se fundamenta no
Teorema de Mercer, sabe-se que existe um mapeamento Φ para um espaço de Hilbert reproduzível
ampliado Ĥ, no qual o kernel transformado K̂k pode ser interpretado como um produto interno
nesse espaço, ou seja,

⟨Φ(x),Φ(x′)⟩ = K̂k(x,x′).

Essa propriedade permite reformular o teste estatístico no arcabouço de kernels, o que permite
uma análise eficiente da discrepância entre distribuições.

No que se segue, Ĥ será o RKHS adotado. Sem perda de generalidade, assume-se que F é o
conjunto de funções contidas na bola unitária de Ĥ.

Definição 3.1. Sejam F uma classe de funções f : S → R, η1 e η2 medidas de probabilidade, e o1
e o2 variáveis aleatórias com distribuições p1 e p2 dadas por η1 e η2, respectivamente. Considere
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amostras i.i.d. S1 = {s1, . . . , sm} e S2 = {s1, . . . , sn}, com distribuições p1 e p2, respectivamente.
A MMD2 é definida para este caso através da equação

MMD2[F , S1, S2] =
1

M(M − 1)

m∑
i=1

m∑
j ̸=i

o1(si)o1(sj) · K̂k(si, sj)

+
1

N(N − 1)

n∑
i=1

n∑
j ̸=i

o2(si)o2(sj) · K̂k(si, sj)

− 2

MN

m∑
i=1

n∑
j=1

o1(si)o2(sj) · K̂k(si, sj),

(6)

em que N e M representam os números de sequências totais considerando ocorrências, respectiva-
mente, e o(·) é a função que conta o número de ocorrências.

O estatístico MMD permite testar se duas distribuições p1 e p2 são distintas. Conforme o
Teorema 5 do artigo [6], o MMD é zero se, e somente se, p1 = p2, ou seja, quando as distribuições
são idênticas. O estatístico definido em (6) será utilizado como base para o teste de hipótese,
possibilitando avaliar se as sequências do paciente diferem de forma estatisticamente significativa.

No contexto deste estudo, p1 e p2 representam as distribuições das sequências biológicas de um
paciente em diferentes momentos: antes e depois do tratamento. Portanto, um valor elevado de
MMD indica que a distribuição sofreu alteração, sugerindo uma redução na presença de células
leucêmicas. Com efeito, um MMD significativo indica uma mudança na diversidade celular, asso-
ciada a menor probabilidade de persistência da leucemia. Por outro lado, a ausência de diferença
significativa será interpretada como indicativo de alta probabilidade de que o paciente permaneça
leucêmico após o tratamento.

Para determinar a significância do MMD, utiliza-se o Teorema 3.1, cujos detalhes estão apresen-
tados na Seção 5.5.2 do livro [10]. Especificamente, sejam x1, x2, . . . observações com distribuição
dada por p, e seja K um kernel simétrico. Definem-se ζ0, ζ1 e ζ2 como

ζ0 = Ex,x′K(x, x′), (7a)
ζ1(xi) = ExK(xi, x)− ζ0, (7b)
ζ2(xi, xj) = K(xi, xj)− ζ1(xi)− ζ1(xj)− ζ0. (7c)

Assim, ζ1 corresponde à projeção de primeira ordem (isto é, à contribuição de cada amostra). Esse
termo mede quanto a esperança de K varia quando condicionada a xi. Já ζ2 representa a projeção
de segunda ordem (isto é, a interação entre pares de amostras). O seguinte teorema estabelece o
comportamento assintótico do estatístico que estamos considerando.

Teorema 3.1. Seja K um kernel simétrico e considere o estatístico Un definido como

Un =
1

m(m− 1)

∑
i ̸=j

K(si, sj). (8)

Seja ainda
θ = E[K(si, sj)], (9)

a esperança da função de kernel sob a distribuição conjunta das amostras. Suponha que E[K2] < ∞
e que a decomposição de Hoeffding do estimador Un satisfaz ζ1 = 0 e ζ2 > 0. Então

n(Un − θ)
d−→ m(m− 1)

2
Y, (10)
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em que Y é uma variável aleatória da forma

Y =

r∑
l=1

λl(χ
2
1l − 1), (11)

com χ2
11, . . . χ

2
1r variáveis independentes e λl os autovalores associados à decomposição espectral

do kernel Kk.

Com essa fundamentação, modifica-se o Teorema 12 do artigo [6] para estabelecer a distribui-
ção nula do teste de hipótese baseado no MMD, o que permite avaliar se houve uma alteração
significativa na diversidade celular e, consequentemente, inferir a probabilidade de persistência da
leucemia.

Teorema 3.2. Seja K̃k(si, sj) o kernel entre o mapa de características do qual a imersão média
de µη1

tem sido subtraída,

K̃k(si, sj) :=⟨ϕ(si)− µη1
, ϕ(sj)− µη1

⟩H
=Kk(si, sj)−ESi

1
Kk(si,S

i
1)−ESi

1
Kk(S

i
1, sj) +ESi

1,S
′Kk(S

i
1,S

′),
(12)

com S′ sendo uma cópia independente de Si1 dada por p1. Suponha que t = m+n, lim
m,n→∞

m/t → ρ1

e lim
m,n→∞

n/t → ρ2 := (1 − ρ1) para 0 < ρ1 < 1 fixo. Então, sobre a hipótese nula H0, MMD2
u

converge em distribuição a

tMMD2
u[F ,S1,S2] −→

D

r∑
l=1

λ̃l

[
(ρ

−1/2
1 al − ρ

−1/2
2 bl)

2 − (ρ1ρ2)
−1

]
, (13)

com r = posto(A), Aij = K̃k(si, sj), al ∼ N (0, 1) e bl ∼ N (0, 1) sendo sequências finitas de
variáveis aleatórias gaussianas independentes, e os λ̃i são os autovalores normalizados de K̃k.

4 Resultados e Discussão

Nesta seção, apresentam-se os resultados obtidos a partir da aplicação da teoria desenvolvida
nas seções anteriores, o processo de obtenção dos dados conduzido pelo grupo de pesquisa do
Centro Infantil Boldrini e uma análise preliminar dos estatísticos gerados.

A preparação e seleção das sequências biológicas de cada paciente foram realizadas conforme
descrito na seção de métodos de [5]. O estudo inclui amostras de células da medula óssea de
76 pacientes com leucemia linfoide aguda B-derivada, analisadas no Centro Infantil Boldrini, em
Campinas, São Paulo. Para a análise da MRD e a avaliação da frequência clonotípica de cada
paciente, utilizam-se amostras pareadas coletadas no Dia 0 e no Dia 35 do tratamento.

Todas as amostras do Dia 0 são classificadas como leucêmicas e apresentam um alto índice
de linfoblastos, o que possibilita a identificação das sequências de nucleotídeos associadas a esses
clonótipos. As amostras do Dia 35, por sua vez, são empregadas na estimativa da MRD, além de
fornecerem informações sobre a abundância das sequências clonotípicas ao longo do tratamento.

A fim de testar a hipótese de que a distribuição das sequências permaneceu inalterada ou sofreu
mudanças significativas durante o tratamento, aplica-se o estatístico MMD, definido na equação
(6), com nível de significância de 0.01, às sequências de cada paciente nos dois instantes de coleta,
desconsiderando as sequências leucêmicas do Dia 35. Esse procedimento resulta em um valor de
MMD por paciente, totalizando 76 observações. Além disso, avalia-se a relação entre os valores de
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Figura 1: Probabilidade de permanência da leucemia após o tratamento, agrupada conforme o
estado leucêmico determinado pela MRD. Fonte: Produzido pelos autores.

probabilidade calculados a partir da MMD e da MRD, o que permite a classificação dos pacientes
de acordo com seu estado leucêmico no Dia 35, além de possibilitar, futuramente, a determinação
de um limiar ótimo para essa discriminação, sem a necessidade do uso da MRD.

Utiliza-se a otimização bayesiana para selecionar os valores ótimos dos parâmetros (λ, σ, γ, α)
que maximizam a correlação de Spearman entre os valores de MRD e os p-valores obtidos pela
MMD em todos os conjuntos de sequências dos pacientes. No contexto da leucemia, pacientes
com MRD ≤ 0.0001 são considerados em remissão, enquanto aqueles com MRD > 0.0001 ainda
apresentam sinais da doença.

A Figura 1 revela divergências entre as classificações obtidas pela MRD e os valores de pro-
babilidade calculados a partir da MMD. Alguns pacientes classificados como não leucêmicos pela
MRD apresentam probabilidade de 1 de recaída segundo a MMD, enquanto outros, classificados
como leucêmicos, apresentam probabilidade próxima de 0.5 de ainda estarem doentes.

Ao utilizar a MRD como referência tanto para a classificação dos pacientes quanto para a de-
terminação dos parâmetros ótimos da MMD, observam-se 8 pacientes incorretamente classificados,
dos quais apenas 6 representariam um possível risco clínico.

5 Conclusão e Considerações Finais

Com o auxílio do estatístico MMD, proposto em [6], e do kernel baseado em k-mers apresentado
em [8] e [2], foi possível extrair informações quantitativas das sequências biológicas analisadas. Essa
abordagem permitiu manipular os dados de forma mais eficiente, facilitando sua interpretação e
aplicação. Em particular, os resultados do teste de hipótese forneceram estimativas da probabili-
dade de permanência da leucemia nos pacientes ao longo do tratamento.

Apesar dos avanços alcançados, observa-se que as probabilidades inferidas a partir do MMD não
correspondem exatamente aos valores clínicos esperados, havendo casos em que a estimativa diverge
do diagnóstico real. Para aprimorar a precisão do modelo, serão necessários novos experimentos,
incluindo a análise da influência dos parâmetros k, λ, σ e γ sobre o desempenho do método. Ainda
assim, os resultados obtidos até o momento indicam que a abordagem proposta constitui uma boa
aproximação inicial, abrindo caminho para futuras melhorias e validações.
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