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Modelagem Computacional de Veiculos Aeroespaciais
Através de Métodos Numéricos Calibrados com Dados
Experimentais
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ICMC/USP, Sao Carlos, SP

Com o objetivo de tornar a operagao de veiculos-foguete experimentais, construidos de forma
amadora, mais confiavel e credivel, propomos o desenvolvimento de um algoritmo capaz de simular
o comportamento, durante o voo, de um foguete de sondagem operando em baixa altitude e em
regime subsonico. O algoritmo fornece previsdes de trajetoria e possiveis locais de queda, de
modo a facilitar a recuperacao tanto do veiculo lancador quanto dos dados armazenados em seu
computador de bordo.

A modelagem matemaética do movimento de translagdo baseou-se na forma diferencial da Se-
gunda Lei de Newton [3]. O modelo considera as principais forgas atuantes no foguete, como
peso, arrasto, empuxo e sustentacao [4], desconsiderando, contudo, efeitos associados a dindmica
celeste da Terra, como a forga de Coriolis e o efeito J2 [1]. Tal modelo é acoplado as equagoes de
Euler para a rotagao de corpos rigidos, permitindo a caracterizacao de fendmenos oscilatorios [3].
Ademais, sao adotados diferentes termos forcantes de acordo com os distintos regimes de voo do
foguete (decolagem, fase propelida, coasting e queda livre). O modelo para a fase propelida, por
exemplo, pode ser escrito como

2"(t)ym(t) = (E(t) = b [v(2)]) cos(a(t)) cos(p(t)),

)
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y"(O)m(t) = (E(t) = b [v(t)]) cos(a(t)) sin(e(1)),
Z'(t)m(t) = (E(t) — b [v(t)]) sin(a(t)) — m(t)g,
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V() = I (Ta = Lo)a' (0w (8) — m' () ()12 + A (8) + 74 (1),
W) = I (I = Ly)a' (67 (1),

onde as varidveis de interesse sao as coordenadas z, y, z, massa m, centro de gravidade ¢, e angulos
de Euler «, v, w, todas fungoes do tempo. Na equagdo (1), b é a influéncia da for¢a de arrasto dada
por b= 7Ar€fC’d, v(t) = (2/(t),y'(t), 2/ (t)) é a velocidade instantanea do projétil, ¢(t) é o angulo
azimutal de langamento, e o termo forgante A(t) representa a ac¢do da for¢a de arrasto devido ao
vento atmosférico w, dada por
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onde 0 € {«a,~} é o dngulo de Euler sendo afetado por esta forga. Ainda, para fechar as equagoes, é
necessario conhecer diversos parametros: curva de forga de empuxo E(t), momentos de inércia I,
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I, e I, taxa de consumo de combustivel M™% taxa de amortecimento do centro de gravidade
C’ga”(’, densidade p, distancia do bocal até o centro de gravidade 7., area de referéncia A,.f,
coeficiente de arrasto Cy, coeficientes de sustentacao total Cy e com relagao a cada componente j €
{cone, aletas, cauda} do foguete C7, centros de pressdo total C}, e com relagdo a cada componente
Cg, além do vetor velocidade do vento atmosférico w.

Neste trabalho, propomos a agao de uma nova forga, denominada for¢a de resisténcia ao movi-
mento, denotada por 7, de natureza empirica, atuante sobre o centro de pressao e responsavel por
causar certa resisténcia no alinhamento da trajetéria com a diregao de escoamento das rajadas de
vento incidentes. Tal forca é modelada por

p : : p ~
o = —§Aref|V|QCe |Gy — cg()]sin(0(t) — Ores) + §Aref|V|9'(t) > CH(C) =), (3)
j=1

onde 0 € {a,~} & o dngulo de Euler sendo afetado por esta forga.

Os parametros de performance do foguete no modelo sdo obtidos através de calibragdo expe-
rimental, através de dados coletados de sensores acoplados em bancada de teste. Os parametros
ambientais sao obtidos acessando informagoes climéticas e geogréficas.
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Figura 1: Resultados da altitude (esquerda), o dngulo de Euler pitch a (centro), e a evolugao do
passo de tempo adaptativo (direita) durante a simula¢do numeérica. Fonte: Elaborada pelo autor.

O modelo foi resolvido numericamente por meio da aplicagao do método numérico de Runge-
Kutta-Fehlberg 2], empregando passos de tempo tanto fixos quanto adaptativos. Os resultados
foram comparados com curvas reais de sensores embarcados de foguetes experimentais lancados
em 2023 e 2024, com boa concordancia entre os resultados.
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