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Com o objetivo de tornar a operação de veículos-foguete experimentais, construídos de forma
amadora, mais confiável e credível, propomos o desenvolvimento de um algoritmo capaz de simular
o comportamento, durante o voo, de um foguete de sondagem operando em baixa altitude e em
regime subsônico. O algoritmo fornece previsões de trajetória e possíveis locais de queda, de
modo a facilitar a recuperação tanto do veículo lançador quanto dos dados armazenados em seu
computador de bordo.

A modelagem matemática do movimento de translação baseou-se na forma diferencial da Se-
gunda Lei de Newton [3]. O modelo considera as principais forças atuantes no foguete, como
peso, arrasto, empuxo e sustentação [4], desconsiderando, contudo, efeitos associados à dinâmica
celeste da Terra, como a força de Coriolis e o efeito J2 [1]. Tal modelo é acoplado às equações de
Euler para a rotação de corpos rígidos, permitindo a caracterização de fenômenos oscilatórios [3].
Ademais, são adotados diferentes termos forçantes de acordo com os distintos regimes de voo do
foguete (decolagem, fase propelida, coasting e queda livre). O modelo para a fase propelida, por
exemplo, pode ser escrito como

x′′(t)m(t) = (E(t)− b |v(t)|) cos(α(t)) cos(φ(t)),
y′′(t)m(t) = (E(t)− b |v(t)|) cos(α(t)) sin(φ(t)),
z′′(t)m(t) = (E(t)− b |v(t)|) sin(α(t))−m(t)g,

m′′(t) = −Mratio, (1)
c′′g (t) = −Cratio

g ,

α′′(t) = I−1
α (Iγ − Iω)γ

′(t)ω′(t)−m′(t)α′(t)r2e + λα(t) + τα(t),

γ′′(t) = I−1
γ (Iα − Iω)α

′(t)ω′(t)−m′(t)γ′(t)r2e + λγ(t) + τγ(t),

ω′′(t) = I−1
ω (Iα − Iγ)α

′(t)γ′(t),

onde as variáveis de interesse são as coordenadas x, y, z, massa m, centro de gravidade cg e ângulos
de Euler α, γ, ω, todas funções do tempo. Na equação (1), b é a influência da força de arrasto dada
por b = ρ

2ArefCd, v(t) = (x′(t), y′(t), z′(t)) é a velocidade instantânea do projétil, φ(t) é o ângulo
azimutal de lançamento, e o termo forçante λ(t) representa a ação da força de arrasto devido ao
vento atmosférico w, dada por

λθ(t) =
ρ

2
Aref |w|2Cℓ +

ρ

2
Aref |w|2θ(t)

n∑
j=1

Cj
ℓ

(
Cj

p − cg(t)
)
, (2)

onde θ ∈ {α, γ} é o ângulo de Euler sendo afetado por esta força. Ainda, para fechar as equações, é
necessário conhecer diversos parâmetros: curva de força de empuxo E(t), momentos de inércia Iα,
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Iω e Iγ , taxa de consumo de combustível Mratio, taxa de amortecimento do centro de gravidade
Cratio

g , densidade ρ, distância do bocal até o centro de gravidade re, área de referência Aref ,
coeficiente de arrasto Cd, coeficientes de sustentação total Cℓ e com relação a cada componente j ∈
{cone, aletas, cauda} do foguete Cj

ℓ , centros de pressão total Cp e com relação a cada componente
Cj

p, além do vetor velocidade do vento atmosférico w.
Neste trabalho, propomos a ação de uma nova força, denominada força de resistência ao movi-

mento, denotada por τ , de natureza empírica, atuante sobre o centro de pressão e responsável por
causar certa resistência no alinhamento da trajetória com a direção de escoamento das rajadas de
vento incidentes. Tal força é modelada por

τθ = −ρ

2
Aref |v|2Cℓ |Cj

p − cg(t)| sin(θ(t)− θref ) +
ρ

2
Aref |v|θ′(t)

n∑
j=1

Cj
ℓ (Cj

p − cg(t))
2, (3)

onde θ ∈ {α, γ} é o ângulo de Euler sendo afetado por esta força.
Os parâmetros de performance do foguete no modelo são obtidos através de calibração expe-

rimental, através de dados coletados de sensores acoplados em bancada de teste. Os parâmetros
ambientais são obtidos acessando informações climáticas e geográficas.

Figura 1: Resultados da altitude (esquerda), o ângulo de Euler pitch α (centro), e a evolução do
passo de tempo adaptativo (direita) durante a simulação numérica. Fonte: Elaborada pelo autor.

O modelo foi resolvido numericamente por meio da aplicação do método numérico de Runge-
Kutta-Fehlberg [2], empregando passos de tempo tanto fixos quanto adaptativos. Os resultados
foram comparados com curvas reais de sensores embarcados de foguetes experimentais lançados
em 2023 e 2024, com boa concordância entre os resultados.
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