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O estudo das máquinas de Turing sob a perspectiva da dinâmica topológica e da dinâmica
simbólica oferece uma ferramenta teórica útil para a compreensão da complexidade computacional
e da dinâmica de sistemas discretos. A codificação das configurações de uma máquina de Turing em
espaços simbólicos – tipicamente como pontos em um espaço métrico compacto, como AZ ou Q×
AZ×Z – possibilita analisar o comportamento global da máquina como um sistema dinâmico. Nesse
contexto, a máquina de Turing induz uma transformação, cujas propriedades dinâmicas (como
expansividade, recorrência, sensibilidade a condição inicial e entropia) refletem as características
da lógica computacional da máquina.

Uma das conexões mais significativas nesse sentido é quando se relaciona com os shifts de tipo
finito (SFTs) – uma classe de sistemas dinâmicos simbólicos caracterizados por restrições locais
sobre os padrões permitidos. Os SFTs são conhecidos por seu comportamento dinâmico rico e são
frequentemente utilizados para modelar máquinas de Turing e outros sistemas computacionais.

Este projeto de IC é baseado em um estudo da dinâmica topológica de máquinas de Turing em
direção ao artigo [2] e visa estender a máquina de Turing clássica para uma versão bifuncional – que
seja capaz de executar duas funções correlacionadas simultaneamente – e estudar as propriedades
da dinâmica topológica de tais máquinas estendidas. Um dos resultados principais de [2] afirma
que, se uma máquina de Turing for expansiva, então ela é topologicamente conjugada a um SFT.
Como a máquina de Turing estendida é baseada no espaço simbólico zip shift [3], que representa
extensões do shift bilateral de contexto bijetivo para localmente bijetivo, então no teorema principal
deste trabalho pretende-se demonstrar que, sob a condição de S-expansividade – expansividade
bilateral para dinâmicas localmente bijetivas – uma máquina de Turing estendida é topologicamente
conjugada à dinâmica simbólica zip shift.

Mais precisamente, nesse trabalho, apresentamos a máquina de Turing com fita móvel (MTT)
como um sistema dinâmico e mostramos que tais máquinas são dinâmicas localmente bijetivas
e finitas-por-1. Além disso, como objetivo final desse projeto, buscamos mostrar que as MTT
estendidas com duas cabeças fixas são sistemas dinâmicos S-expansivos topologicamente conjugados
com a dinâmica simbólica estendida zip shift.

Definição 1. Um sistema dinâmico é uma função f : X → X no mínimo contínua definida em
um espaço métrico (compacto).

Definição 2 ([2]). Um sistema dinâmico f : X → X é dito localmente bijetivo se, para todo
x ∈ X, existe uma vizinhança U de x na qual f é bijetiva.

Definição 3 ([2]). Um sistema dinâmico é dito finito-por-1 se existe k > 0 tal que, para todo x,
#(f−1(x)) ≤ k, onde # representa a cardinalidade desse conjunto.

Exemplo 1 ([3]). Sejam Z e S dois conjuntos finitos de símbolos, com #Z ≤ #S, e considere
uma função sobrejetora τ : S → Z. Defina o espaço zip shift como Σ := ZZ− × SZ+
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a aplicação στ : Σ → Σ definida por

[στ (x)]i =

{
xi+1, se i ̸= −1,

τ(x0), se i = −1.

A aplicação στ define um sistema dinâmico finito-por-1, denominado zip shift.

Definição 4. Um sistema dinâmico finito-por-1 f : X → X definido em um espaço métrico (X, d)
é dito S-expansivo se existe δ > 0 tal que, para todo x, y ∈ X, existe k ∈ Z com d(fkx, fky) > δ.
Para k > 0, é considerado f−k(x) := [fk(x)]−1. Caso f seja bijetiva, diremos que o sistema é
expansivo.

Para definirmos uma máquina de Turing com fita móvel (MTT), consideraremos um conjunto
finito Q, não vazio, de estados internos e um conjunto A, também finito, de símbolos com pelo
menos dois elementos, de modo que Q ∩A = ∅.

Definição 5 ([2]). Seja δ : Q × A → Q × A × {−1, 0, 1} uma função de transição. Uma MTT é
um sistema dinâmico f : X → X onde X = Q×AZ e f é definida como

f(x)q = δQπ(x), (1)

f(x)i = δAπ(x) se i = −δZπ(x), (2)

f(x)i = xi+δZπ(x) se i ̸= −δZπ(x) (3)

Proposição 1 ([2]). Toda MTT é localmente bijetiva e finita-por-1.

Proposição 2. Toda MTT estendida construída em um espaço zip shift é localmente bijetiva e
finita-por-1.

Teorema 1 ([2]). Toda MTT expansiva é topologicamente conjugada com um SFT.

Teorema 2. Toda MTT estendida S-expansiva construída em um espaço zip shift é topologicamente
conjugada com um zip shift do tipo finito.

Demonstração. A ideia principal da prova deste teorema é mostrar que as MTT estendidas têm a
propriedade de sombreamento [1] bilateral.
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