

Bayesian Calibration and Model Selection for Evaluating Radiotherapy and Immunotherapy in Triple-Negative Breast Cancer

Guilherme Rodrigues¹, Paulo F. A. Mancera²

Institute of Biosciences, Unesp, Botucatu, SP

Patrick N. Song³, Anna G. Sorace⁴

The University of Alabama at Birmingham, Birmingham, Alabama

Thomas E. Yankeelov⁵, Ernesto A. B. F. Lima⁶

Oden Institute for Computational Engineering and Sciences, Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX

Breast cancers are classified according to the expression of estrogen, progesterone, and HER2 receptors. In the absence of these biomarkers, the cancer is characterized as triple-negative breast cancer (TNBC), which does not respond to targeted therapies. Therefore, strategies to enhance immunotherapy are required, particularly given that radiotherapy can modulate the tumor microenvironment by increasing immune cell levels [2].

We utilized tumor volume data to develop a calibration and model selection framework for mathematical models based on ordinary differential equations (ODEs), employing a Bayesian approach [3]. The investigations used 4T1 cells as a model for TNBC, which exhibited distinct radiation response profiles (sensitivity and resistance). The experimental design involved 56 mice distributed into six groups: control (sensitive and resistant cells without treatment), radiotherapy (sensitive and resistant cells), immunotherapy (sensitive cells), and a combination of radiotherapy and immunotherapy (sensitive cells). Figure 1 presents the calibration and model selection framework.

The model selected for studying the effects of radiotherapy is described by the following ODE:

$$\frac{dN}{dt} = rN \left(1 - \frac{N}{K}\right) - N \sum_i \alpha D_i^{rad} e^{-\beta(t-\tau_i-\delta)}, \quad (1)$$

where r denotes the intrinsic tumor growth rate, K is the carrying capacity, α represents the efficiency of radiotherapy in reducing tumor cells, β is the decay rate of radiotherapy efficacy, δ is the delay before the radiotherapy effect begins, and D_i^{rad} is the dose administered at time τ_i , for $i = 0, 1, 2, 3, 4, 5$ days.

¹g.rodrigues2@unesp.br

²paulo.mancera@unesp.br

³psong@uabmc.edu

⁴asorace@uabmc.edu

⁵thomas.yankeelov@utexas.edu

⁶ernesto.lima@utexas.edu

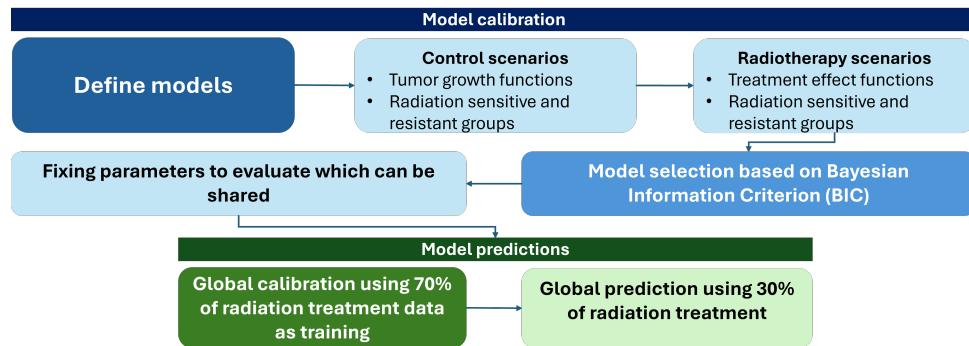


Figure 1: Model calibration and prediction framework, including model definition, calibration with control and radiotherapy data, and selection via the Bayesian Information Criterion. Source: Authors.

The model revealed that radiation-resistant cells grow significantly faster ($r_r = 1.15 \times 10^{-1}$ day $^{-1}$, about 29.3% higher than r_s), likely due to increased epidermal growth factor receptor (EGFR) expression [1]. Radiation-resistant cells also exhibit enhanced post-treatment repair, as shown by a higher estimated β_r value (about 442% higher than β_s). The next steps involve selecting the effects of immunotherapy, and using the full model to analyze the data with a combination of radiotherapy and immunotherapy.

Acknowledgments

GR was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil — Funding Code 001. We thank the American Cancer Society Grant RSG-18-006-01-CCE and the National Institute of Health for funding via R01CA240589, R01CA276540, and U24CA226110. We thank the Cancer Prevention and Research Institute of Texas for support through CPRIT RR160005. T.E.Y. is a CPRIT Scholar in Cancer Research. We also thank the Texas Advanced Computing Center for providing high performance computing resources. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number T32GM135028. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

- [1] J. Ji, Y. Ding, Y. Kong, M. Fang, X. Yu, X. Lai, and Q. Gu. “Triple-negative breast cancer cells that survive ionizing radiation exhibit an Axl-dependent aggressive radioresistant phenotype”. In: **Experimental and Therapeutic Medicine** 26.3 (2023), p. 448. DOI: 10.3892/etm.2023.12147.
- [2] A. V. F. Massicano, P. N. Song, A. Mansur, S. L. White, A. G. Sorace, and S. E. Lapi. “[⁸⁹Zr]-Atezolizumab-PET imaging reveals longitudinal alterations in PDL1 during therapy in TNBC preclinical models”. In: **Cancers** 15.10 (2023), p. 2708. DOI: 10.3390/cancers15102708.
- [3] A. C. M. Resende, E. A. B. F. Lima, R. C. Almeida, M. T. McKenna, and T. E. Yankeelov. “Model selection for assessing the effects of doxorubicin on triple-negative breast cancer cell lines”. In: **Journal of Mathematical Biology** 85.6 (2022), p. 65. DOI: 10.1007/s00285-022-01828-x.