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Uma Introdugao ao Método do Gradiente em Otimizagao
Continua
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Nesta pesquisa de Iniciacao Cientifica foi estudado o método do gradiente aplicado & minimiza-
cao de fungoes continuamente diferenciaveis, com foco na sua convergéncia e eficacia em problemas
de programagao quadratica convexa. Além da analise teorica, foram realizadas implementacgoes e
experimentos que verificaram as propriedades de convergéncia do algoritmo. O desenvolvimento
da pesquisa abrangeu em detalhes o processo iterativo do método, exemplos praticos em que o
algoritmo foi aplicado, e a velocidade de convergéncia do método. O estudo evidenciou que, sob
condigoes especificas, o método de gradiente é eficaz para encontrar minimos de fung¢oes convexas,
com uma taxa de convergéncia dependente de propriedades da funcéo a ser otimizada. As fontes
principais da literatura que forneceram uma base tedrica solida e classica sobre o tema foram:
Convex Optimization [1], Elementos de Programagao Nao-Linear [2], Numerical Optimization [3],
Aspectos Teoricos e Computacionais [4] e Otimiza¢ao: Condigoes de Otimalidade, Elementos de
Analise Convexa e Dualidade [5].

Método do Gradiente com busca exata para minimizar uma fungdo f : R™ — R continuamente
diferenciével:

1. Dado zg € R™
2. Para k=0,1,2,... até convergéncia:

(a) Calcule d* = —V f(z*);
(b) Determine t;, € R minimizador de ¢(t) := f(z* + td*);

(c) Atualize z¥*! = 2 + t;.d".

A nocgao de convergéncia na pratica leva em consideragao algum critério de parada. Um critério
bastante comum é pedir que ||V f(z¥)| < ¢, para alguma tolerancia ¢ > 0, o que vai ao encontro da
condi¢ao necesséria de otimalidade de primeira ordem V f(x) = 0. Outro aspecto com relevancia
pratica é considerar algum tipo de minimizagao unidimensional inexata no item (b), por exemplo,
algo como a famosa busca de Armijo. Tal estratégia visa garantir uma redugao suficiente da fun-
¢ao objetivo a cada iteracao, sem exigir a determinacgao exata do ponto minimizador ao longo da
direcao de descida. A ideia principal consiste em evitar passos longos, que podem afastar o iterado
da regiao de interesse, bem como passos demasiadamente curtos, que resultam em progresso inefi-
ciente. Assim, busca-se um equilibrio entre avanco significativo na dire¢do de descida e economia
computacional.

Um caso simplificado, mas ao mesmo tempo relevante, de convergéncia do Método do Gradiente
é quando a fungao objetivo f é quadratica e estritamente convexa, ou seja, quando f pode ser
descrita como
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flx) = %xTAx — bl (1)
em que A € R™ "™ ¢é simétrica definida positiva e b é um vetor dado do R™. Estas hipoteses sobre
(1) garantem que existe um tnico z* € R™ tal que Vf(2*) = 0. Em outras palavras, Az* — b = 0,
ou seja, x* é solucao do sistema linear Az = b. Além disso, * é minimizador global tnico de f.

Quanto ao Método do Gradiente para minimizar f quadratica como (1), tem-se os seguintes
resultados:
(i) O tamanho de passo ¢, > 0 do item (b) tem formula fechada apresentada na equacgao (2).

(dk)Tdk

tr = m (2)

(ii) Dado qualquer ponto inicial z° € R"™, a sequéncia {z*} gerada pelo método do gradiente
converge a z*.

(iii) Mais que isso, a convergéncia é linear com taxa v € [0,1) dada por v = /1 — /)\\—’1‘ sendo

An > 0 e A1 > 0 o menor e maior autovalor da matriz A, respectivamente. Tem-se inclusive que
Vk vale (3).

Iz — 2*|| < Alla® — 2. (3)

Os resultados (i), (ii) e (iii) sdo validos para fun¢des quadraticas estritamente convexas. Notamos,
no entanto, que resultados similares podem ser obtidos sob hipdteses mais gerais. Estudos nesse
sentido também foram conduzidos nessa Iniciacao Cientifica.

Em aplicagoes praticas, é comum que a matriz A seja mal condicionada ou quase-singular, o
que compromete tanto a estabilidade numérica quanto a velocidade de convergéncia do método.
Nestes casos, algumas estratégias podem ser adotadas para contornar essas dificuldades. Uma
possibilidade consiste na utilizacao de pré-condicionadores, cujo objetivo é transformar o problema
original em um equivalente, mas com propriedades numéricas mais favoraveis. Outras estratégias
incorporando algum tipo de regularizagado no método também poderiam ser consideradas.
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