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Nesta pesquisa de Iniciação Científica foi estudado o método do gradiente aplicado à minimiza-
ção de funções continuamente diferenciâveis, com foco na sua convergência e eficácia em problemas
de programação quadrática convexa. Além da análise teórica, foram realizadas implementações e
experimentos que verificaram as propriedades de convergência do algoritmo. O desenvolvimento
da pesquisa abrangeu em detalhes o processo iterativo do método, exemplos práticos em que o
algoritmo foi aplicado, e a velocidade de convergência do método. O estudo evidenciou que, sob
condições específicas, o método de gradiente é eficaz para encontrar mínimos de funções convexas,
com uma taxa de convergência dependente de propriedades da função a ser otimizada. As fontes
principais da literatura que forneceram uma base teórica sólida e clássica sobre o tema foram:
Convex Optimization [1], Elementos de Programação Não-Linear [2], Numerical Optimization [3],
Aspectos Teóricos e Computacionais [4] e Otimização: Condições de Otimalidade, Elementos de
Analise Convexa e Dualidade [5].

Método do Gradiente com busca exata para minimizar uma função f : Rn → R continuamente
diferenciável:

1. Dado x0 ∈ Rn

2. Para k = 0, 1, 2, . . . até convergência:

(a) Calcule dk = −∇f(xk);

(b) Determine tk ∈ R minimizador de φ(t) := f(xk + tdk);

(c) Atualize xk+1 = xk + tkd
k.

A noção de convergência na prática leva em consideração algum critério de parada. Um critério
bastante comum é pedir que ∥∇f(xk)∥ < ϵ, para alguma tolerância ϵ > 0, o que vai ao encontro da
condição necessária de otimalidade de primeira ordem ∇f(x) = 0. Outro aspecto com relevância
prática é considerar algum tipo de minimização unidimensional inexata no item (b), por exemplo,
algo como a famosa busca de Armijo. Tal estratégia visa garantir uma redução suficiente da fun-
ção objetivo a cada iteração, sem exigir a determinação exata do ponto minimizador ao longo da
direção de descida. A ideia principal consiste em evitar passos longos, que podem afastar o iterado
da região de interesse, bem como passos demasiadamente curtos, que resultam em progresso inefi-
ciente. Assim, busca-se um equilíbrio entre avanço significativo na direção de descida e economia
computacional.

Um caso simplificado, mas ao mesmo tempo relevante, de convergência do Método do Gradiente
é quando a função objetivo f é quadrática e estritamente convexa, ou seja, quando f pode ser
descrita como
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f(x) =
1

2
xTAx− bTx, (1)

em que A ∈ Rn×n é simétrica definida positiva e b é um vetor dado do Rn. Estas hipóteses sobre
(1) garantem que existe um único x∗ ∈ Rn tal que ∇f(x∗) = 0. Em outras palavras, Ax∗ − b = 0,
ou seja, x∗ é solução do sistema linear Ax = b. Além disso, x∗ é minimizador global único de f .

Quanto ao Método do Gradiente para minimizar f quadrática como (1), tem-se os seguintes
resultados:

(i) O tamanho de passo tk ≥ 0 do item (b) tem fórmula fechada apresentada na equação (2).

tk =
(dk)T dk

(dk)TAdk
. (2)

(ii) Dado qualquer ponto inicial x0 ∈ Rn, a sequência {xk} gerada pelo método do gradiente
converge a x∗.

(iii) Mais que isso, a convergência é linear com taxa γ ∈ [0, 1) dada por γ =
√

1− λn

λ1
sendo

λn > 0 e λ1 > 0 o menor e maior autovalor da matriz A, respectivamente. Tem-se inclusive que
∀k vale (3).

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥. (3)

Os resultados (i), (ii) e (iii) são válidos para funções quadráticas estritamente convexas. Notamos,
no entanto, que resultados similares podem ser obtidos sob hipóteses mais gerais. Estudos nesse
sentido também foram conduzidos nessa Iniciação Científica.

Em aplicações práticas, é comum que a matriz A seja mal condicionada ou quase-singular, o
que compromete tanto a estabilidade numérica quanto a velocidade de convergência do método.
Nestes casos, algumas estratégias podem ser adotadas para contornar essas dificuldades. Uma
possibilidade consiste na utilização de pré-condicionadores, cujo objetivo é transformar o problema
original em um equivalente, mas com propriedades numéricas mais favoráveis. Outras estratégias
incorporando algum tipo de regularização no método também poderiam ser consideradas.
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