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Quantum Support Vector Machines (QSVMs) represent a promising approach for quantum-
accelerated machine learning, but their implementation on Noisy Intermediate-Scale Quantum
(NISQ) hardware is constrained by deep circuits and high gate counts, which intensify noise accu-
mulation and decoherence [5]. To mitigate these limitations, ZX-Calculus is employed, a diagram-
matic tool that applies mathematical transformations (such as spider fusion, identity removal,
and local complementation) to reduce the number of operations without compromising circuit
functionality [7]. This reduction in complexity makes QSVMs more viable for execution on noisy
intermediate-scale quantum (NISQ) devices.

In Quantum Machine Learning (QML), QSVMs stand out for using quantum feature mapping,
enabling a rich representation of data. Unlike classical SVMs, which explicitly define the kernel
function, QSVMs utilize quantum circuits to implicitly compute kernel values, making it possible
to represent complex feature spaces [6]. However, execution is still affected by circuit depth and
entanglement overhead.

7ZX-Calculus has emerged as a powerful technique for optimizing quantum circuits by represent-
ing them as tensor networks and enabling algebraic transformations that simplify their structure
[1]. Although previous studies have used this approach to analyze barren plateaus and optimize
circuit architectures [2, 4], few works apply it specifically to reduce feature mapping complexity in
QSVMs. This study fills that gap by applying ZX-Calculus to optimize quantum kernels, reducing
gate overhead without degrading classification accuracy.

The QSVM implementation used a ZZFeatureMap to encode classical data into quantum
states [3]. Two entanglement schemes were analyzed: linear, where each qubit interacts only
with its neighbor, and full, where all qubits interact. While full entanglement increases expres-
siveness, it also adds complexity. The study evaluated three parameters: entanglement (Ent.),
repetitions (Reps.), which define how many times the feature map is applied, and features (Feat.),
corresponding to the dimensionality of the mapped classical data. Their impact on circuit size
(total operations) and depth (sequential layers) was analyzed, as shown in Table 1.

The extracted circuit was then converted into a ZX-diagram, where rewriting techniques were
applied to eliminate redundant operations and optimize computational efficiency. Simulations
using the Wine data set (100 samples) demonstrated that the application of ZX-Calculus reduced
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the number of gates by approximately 82% on average, with reductions ranging from 75% to 87%
depending on the type of entanglement, the number of features and repetitions, as detailed in
Table 1. Similarly, circuit depth was reduced by 91.3% on average, reaching a maximum reduction
of 95%. Despite these simplifications, classification accuracy remained stable at 0.900 for most
configurations, with a slight drop to 0.867 for three repetitions and three features, showing that
7ZX-Calculus preserves QSVM effectiveness while significantly reducing computational complexity.

Table 1: Optimized QSVM performance on Wine dataset (100 samples).
Ent. Reps. Feat. Acc. (Orig. — Opt.) Size (Orig. — Opt.) Depth (Orig.— Opt.)

FULL 2 2 0.900 — 0.900 24.00 — 5.91 (-75%)  18.00 — 2.97 (-84%)
2 3 0.900 — 0.900 54.00 — 8.88 (-84%)  42.00 — 2.97 (-93%)
2 4 0.900 — 0.900 96.00 — 11.85 (-88%)  60.00 — 2.97 (-95%)
2 5 0.867 — 0.867 150.00 — 14.82 (-90%)  78.00 — 2.97 (-96%)
3 2 0.900 — 0.900 34.00 — 5.91 (-83%)  26.00 — 2.97 (-89%)
3 3 0.900 — 0.900 78.00 — 8.88 (-89%)  62.00 — 2.97 (-95%)
3 4 0.900 — 0.900 140.00 — 11.85 (-92%)  86.00 — 2.97 (-97%)
3 5 0.900 — 0.900 220.00 — 14.82 (-93%)  110.00 — 2.97 (-97%)
LINEAR 2 2 0.900 — 0.900 24.00 = 5.91 (-75%)  18.00 — 2.97 (-84%)
2 3 0.900 — 0.900 42.00 — 8.88 (-79%)  30.00 — 2.97 (-90%)
2 4 0.933 — 0.933 60.00 — 11.85 (-80%)  36.00 — 2.97 (-92%)
2 5 0.900 — 0.900 78.00 — 14.82 (-81%)  42.00 — 2.97 (-93%)
3 2 0.900 — 0.900 34.00 — 5.91 (-83%)  26.00 — 2.97 (-89%)
3 3 0.867 — 0.867 60.00 — 8.88 (-85%)  44.00 — 2.97 (-93%)
3 4 0.900 — 0.900 86.00 — 11.85 (-86%)  50.00 — 2.97 (-94%)
3 5 0.900 — 0.900 112.00 — 14.82 (-87%)  56.00 — 2.97 (-95%)

Although the findings are promising, the study is limited by the small dataset size and the
reduced number of qubits used in simulations. Future work should investigate the scalability of
the method, expand circuit complexity, and test the approach on real quantum hardware and noisy
simulators.
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