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The use of shape and topology optimization to design efficient thermal management devices has
become a subject of significant research interest. Early studies primarily focused on minimizing
thermal compliance or maximizing heat dissipation, often relying on conduction-based models [3].
To better align with real-world applications, more recent advancements have incorporated con-
vection and radiation effects, as well as multi-physics considerations, such as fluid-thermal and
thermo-mechanical coupling. Another important aspect of such applications is the need to impose
temperature constraints to ensure that heat-generating devices operate within a specific temper-
ature range, preventing component overheating or undesirable phase transitions. In this work we
address the issue of realizing pointwise temperature constraints through a topological derivative-
based strategy.

Given a fixed reference domain D ⊂ R2 and a set O of admissible subdomains of D, our goal is
to solve the following optimization problem

min
Ω∈O

J (Ω) subject to T (x) ≤ T ∗(x), ∀x ∈ D, (1)

where T is the solution of the steady-state heat conduction equation posed on the optimization
domain, J is a cost functional and T ∗ is a given limit temperature. The material properties of the
domain are defined by piecewise constant functions, in a way that Ω can be understood as a stiff
and highly conductive material, while D\Ω is modeled as a very compliant and poor conductor
material. We consider two distinct applications. First, we investigate the design of optimal heat
sink devices. The domain is subjected to only thermal loads and the cost functional is defined as
a combination of the volume of the highly conductive phase and the thermal compliance. Next,
motivated by applications to electric vehicles and aircrafts, as described in [4, 7], we consider
the design of an aluminum battery pack. Additional mechanical loads are introduced, so that
the thermal problem is coupled with the thermo-elasticity partial differential equation. The cost
functional is defined as a linear combination of the total energy of the system and the volume of
the aluminum structure.

We approximate the pointwise constraint T (x) ≤ T ∗(x) using the following quadratic penalty
functional

G(Ω) :=
∫
D
(T − T ∗)2+dx, (2)
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where (T −T ∗)+ := max{T −T ∗, 0}. Thus, the original optimization problem can be restated with
a single equality constraint. Then, in order to apply the topological derivative method, we compute
the first-order asymptotic expansion of G with respect to an infinitesimal singular perturbation of
the geometry [6]. While the topological derivative of energy-type functionals are well established
in the literature, our main contribution with this work is the discussion on the existence of the
topological derivative of (2). This discussion was carried out in [2].

The topology optimization problem is then tackled with the algorithm proposed by Amstutz
and Andrä [1], which combines a level-set representation of the domain with the use of the topolog-
ical derivative of the cost functional as a steepest-descent direction. The numerical results confirm
the expected trade-off between the optimal domain’s volume and the imposed temperature con-
straints, demonstrating the necessity of allocating more conductive material as stricter constraints
are enforced. Furthermore, they reveal a tendency to concentrate material along the shortest paths
between the hottest regions and heat sink areas.

It is worth mentioning that, although we are motivated by thermal applications, problem (1)
represents a more general class of state-constrained problems in shape and topology optimization.
Therefore, our approach could be extended to address problems with different physical motiva-
tions. Furthermore, this type of constraint can also be used to impose connectivity constraints for
manufacturing process, which is a current and relevant application of the present study [5].
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