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A Regressao Logistica possui seu inicio no século XIX, e serviu como um método estatistico
para lidar com a crescente quantidade de informagoes do século. Com a modernizagao do século
XX, a regressao logistica ganhou diversas aplicagoes, nos campos médicos, de ciéncias sociais e de
aprendizado de méquina, sendo esse ultimo utilizando muito o método para classificacao binéaria
de tarefas. Isso é feito utilizando a fungao logistica (ou sigmoide) para transformar a entrada de
dados em um valor de probabilidade entre 0 e 1:
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Dado um contexto, o resultado obtido a partir da entrada da fungéo (1) resulta na probabilidade
de um evento ocorrer, sendo 1 representando certeza e 0 caso contrario. Note-se que ao derivarmos
(1), a mesma é escrita como:
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Nosso modelo de regressao logistica pode ser utilizado no contexto de um modelo de aprendizado
de méaquina: queremos minimizar a fungdo de perda (loss function), que serd responséavel por
verificar se ajustamos os pardmetros com probabilidade maxima. Isso é equivalente a maximizar
a verossimilhanga, isto &, para o conjunto de dados X = {(z®,y@) | 2 € R” y® € {0,1}},

queremos maximizar:
m
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Na fungéo (3), m é o ntimero de dados observados, enquanto P(y() | 2(9;6) & a probabilidade
de observar y(*) dado z(") e os parametros 6. No caso da regressio logistica, essa probabilidade é
modelada pela funcao sigmoide hy

) ) ) y(‘b) ) 1_y(i)
Py@ | 2D;9) = (g(mx@))) : (1 - g(eT:c@))) . (4)

Assim, o problema de otimizacdo consiste em encontrar os parametros # que maximizam a veros-
similhanca.
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Normalmente, trabalhamos com o logaritmo da verossimilhanga, que transforma o produtério
em um somatorio, mantendo o mesmo méaximo, simplificando os célculos e evitando problemas
numéricos associados a produtos de probabilidades muito pequenas, isto &,

0(6) = log L(0) = i log o (y® - oTz). (5)

A mudanga para a funcdo (5) néo altera a localizagdo do méaximo, pois o logaritmo é uma fungao
monotonicamente crescente, mas simplifica os calculos e melhora a estabilidade numeérica. Além
disso, a log-verossimilhanga esta diretamente relacionada & func¢ao de perda utilizada no treina-
mento do modelo.

O problema é convexo e diferenciavel, portanto é possivel utilizar variantes do método do
gradiente descendente. Em notagao vetorial, a atualizagao dos pardmetros é dada por:

OF L = 0%+, VE(0F), (6)

Na equagio (6) ax é o tamanho do passo (ou taxa de aprendizagem) e V£(6%) é o gradiente da
funcdo de verossimilhanca em relacdo aos parametros #%. Observe que o sinal é positivo, pois
estamos maximizando a fun¢do, e nao minimizando.

Note que o ntumero de observagoes pode ser grande, de modo uma estratégia é selecionar
aleatoriamente um tnico exemplo de treinamento (x;,y;) € X, o que nos da a regra do gradiente
estocdstico: '

0, =0; +ay" — he(l‘(i))),fgl). (7)

Na equagao (7) temos que: « é a taxa de aprendizado, y(@ & o rotulo verdadeiro, hg(x(i) é a
previsao do modelo para a entrada z(?), e xy) é a j-ésima feature da i-ésima observagao. Além

disso assumimos conhecidos os rétulos y(* € {0,1}. Para outras codificagdes (como y?) € {~1,1}),
a forma exata da atualizag@ao requer ajustes na derivagao, mas preserva a estrutura fundamental
do método.

Neste estudo, exploramos os fundamentos matematicos da regressao logistica aplicados ao pro-
blema de classificagao, comecando com sua formulagao probabilistica até a aplicagao de métodos de
otimizagao utilizando métodos do tipo gradiente descendente, em particular o gradiente estocéstico
(SGD). As notas de aula de Ng e Ma [3] e o livro de Deisenroth, Faisal e Ong [1] serviram como
guias para este trabalho. Fizemos também uma implementagao dos algoritmos na linguagem Julia.
Além disso, destacou-se a importancia dos fundamentos de algebra linear e otimizagao, conforme
abordado no livro de Friedlander [2]. Vimos que as técnicas de otimizagio e dlgebra linear servem
como uma ferramenta poderosa para a implementacao e o sucesso de metéodos de aprendizagem
de méquina.
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