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A Regressão Logística possui seu início no século XIX, e serviu como um método estatístico
para lidar com a crescente quantidade de informações do século. Com a modernização do século
XX, a regressão logística ganhou diversas aplicações, nos campos médicos, de ciências sociais e de
aprendizado de máquina, sendo esse último utilizando muito o método para classificação binária
de tarefas. Isso é feito utilizando a função logística (ou sigmóide) para transformar a entrada de
dados em um valor de probabilidade entre 0 e 1:

hθ(x) = σ(θ⊺x) =
1

1 + e−θ⊺x
, do qual σ(z) =

1

1 + e−z
. (1)

Dado um contexto, o resultado obtido a partir da entrada da função (1) resulta na probabilidade
de um evento ocorrer, sendo 1 representando certeza e 0 caso contrário. Note-se que ao derivarmos
(1), a mesma é escrita como:

σ′(z) =
d

dz

1

1 + e−z
=

1

(1 + e−z)2
(e−z) =

=
1

1 + e−z
· (1− 1

1 + e−z
) = σ(z) · (1− σ(z)).

(2)

Nosso modelo de regressão logística pode ser utilizado no contexto de um modelo de aprendizado
de máquina: queremos minimizar a função de perda (loss function), que será responsável por
verificar se ajustamos os parâmetros com probabilidade máxima. Isso é equivalente a maximizar
a verossimilhança, isto é, para o conjunto de dados X = {(x(i), y(i)) | x(i) ∈ Rn, y(i) ∈ {0, 1}},
queremos maximizar:

L(θ) =

m∏
i=1

P (y(i) | x(i); θ), (3)

Na função (3), m é o número de dados observados, enquanto P (y(i) | x(i); θ) é a probabilidade
de observar y(i) dado x(i) e os parâmetros θ. No caso da regressão logística, essa probabilidade é
modelada pela função sigmoide hθ

P (y(i) | x(i); θ) =
(
σ(θ⊺x(i))

)y(i)

·
(
1− σ(θ⊺x(i))

)1−y(i)

. (4)

Assim, o problema de otimização consiste em encontrar os parâmetros θ que maximizam a veros-
similhança.
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Normalmente, trabalhamos com o logaritmo da verossimilhança, que transforma o produtório
em um somatório, mantendo o mesmo máximo, simplificando os cálculos e evitando problemas
numéricos associados a produtos de probabilidades muito pequenas, isto é,

ℓ(θ) = logL(θ) =

m∑
i=1

log σ(y(i) · θ⊺x(i)). (5)

A mudança para a função (5) não altera a localização do máximo, pois o logaritmo é uma função
monotonicamente crescente, mas simplifica os cálculos e melhora a estabilidade numérica. Além
disso, a log-verossimilhança está diretamente relacionada à função de perda utilizada no treina-
mento do modelo.

O problema é convexo e diferenciável, portanto é possível utilizar variantes do método do
gradiente descendente. Em notação vetorial, a atualização dos parâmetros é dada por:

θk+1 := θk + αk∇ℓ(θk), (6)

Na equação (6) αk é o tamanho do passo (ou taxa de aprendizagem) e ∇ℓ(θk) é o gradiente da
função de verossimilhança em relação aos parâmetros θk. Observe que o sinal é positivo, pois
estamos maximizando a função, e não minimizando.

Note que o número de observações pode ser grande, de modo uma estratégia é selecionar
aleatoriamente um único exemplo de treinamento (xi, yi) ∈ X , o que nos dá a regra do gradiente
estocástico:

θj := θj + α(y(i) − hθ(x
(i)))x

(i)
j . (7)

Na equação (7) temos que: α é a taxa de aprendizado, y(i) é o rótulo verdadeiro, hθ(x
(i) é a

previsão do modelo para a entrada x(i), e x
(i)
j é a j-ésima feature da i-ésima observação. Além

disso assumimos conhecidos os rótulos y(i) ∈ {0, 1}. Para outras codificações (como y(i) ∈ {−1, 1}),
a forma exata da atualização requer ajustes na derivação, mas preserva a estrutura fundamental
do método.

Neste estudo, exploramos os fundamentos matemáticos da regressão logística aplicados ao pro-
blema de classificação, começando com sua formulação probabilística até a aplicação de métodos de
otimização utilizando métodos do tipo gradiente descendente, em particular o gradiente estocástico
(SGD). As notas de aula de Ng e Ma [3] e o livro de Deisenroth, Faisal e Ong [1] serviram como
guias para este trabalho. Fizemos também uma implementação dos algoritmos na linguagem Julia.
Além disso, destacou-se a importância dos fundamentos de álgebra linear e otimização, conforme
abordado no livro de Friedlander [2]. Vimos que as técnicas de otimização e álgebra linear servem
como uma ferramenta poderosa para a implementação e o sucesso de metéodos de aprendizagem
de máquina.

Referências
[1] M. P. Deisenroth, A. A. Faisal e C. S. Ong. Mathematics for Machine Learning. Cam-

bridge ; New York, NY: Cambridge University Press, 2020. 1 p. isbn: 978-1-108-67993-0.

[2] A. Friedlander. Elementos de Programação Não Linear. Unicamp, jan. de 1994. isbn:
85-268-0304-2.

[3] A. Ng e T. Ma. CS229 Lecture Notes. https://cs229.stanford.edu/main_notes.pdf.
Disponível online. Jun. de 2023.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

010105-2 © 2026 SBMAC


