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O estudo de equações diferenciais ordinárias lineares de segunda ordem é de grande relevância
para a matemática, física e engenharia, devido à sua ampla aplicabilidade em problemas estudados
nas áreas de mecânica dos fluidos, condução de calor, movimento ondulatório e fenômenos eletro-
magnéticos. Outro aspecto relevante é a sua estrutura, que pode ser considerada relativamente
simples, pois não requer um grau elevado de complexidade matemática na sua resolução, além de
contar com uma vasta fundamentação teórica já estabelecida [1].

Neste estudo, emprega-se o método Shooting (ou método do disparo) para a resolução de
problemas de valor de contorno (PVCs) da forma,

y′′(x) = f (x, y(x), y′(x)) , a ≤ x ≤ b, y(a) = α e y(b) = β. (1)

O método Shooting consiste em transformar um PVC em um sistema de problemas de valor inicial
(PVIs) equivalente e, então supor inclinações para a trajetória da solução no ponto conhecido
(a, y(a)). Em seguida, aplica-se uma técnica numérica para resolver o sistema de PVIs e determinar
uma aproximação para o valor de y(b) [3].

O problema abordado refere-se à equação diferencial básica da curva elástica para uma viga
simplesmente apoiada e uniformemente carregada, considerando suas respectivas condições de con-
torno, tem-se o PVC, 
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y(0) = 0, y(L) = 0

x ∈ [0, L] . (2)

onde E é o módulo de elasticidade, I é o momento de inércia e w é a distribuição de carga. Foram
considerados os valores, E = 200GPa, I = 30.000 cm4, w = 15 kN/m e L = 3m.

Na aplicação do método Shooting, o PVC em (2) é transformado no sistema de PVIs,
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y(a) = 0, y′(a) = za

x ∈ [a, b] = [0, L] , (3)

então foram feitos (por tentativa e erro) os disparos za1 = 0 e za2 = −0, 000005, obtendo yb1(3) =
8, 395103 · 10−6 m e yb2(3) = −6, 604897 · 10−6 m. A cada disparo, os PVIs foram resolvidos pelo
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método de Runge-Kutta de quarta ordem considerando uma partição em [0, L] de 200 subintervalos.
Para os cálculos, utilizou-se a linguagem de programação Python.

Como a equação diferencial é linear, pode-se determinar a inclinação correta do disparo por
interpolação linear, uma vez que a inclinação correta, za, está linearmente relacionada com os
disparos errados (za1, yb1) e (za2, yb2) [2]

za = za1 +
za2 − za1
yb2 − yb1

(0− yb1), (4)

obtendo-se, za = −2, 798368 · 10−6 e yb = 2, 216844 · 10−21 ≈ 0, isto é, y(3) ≈ 0.
A Figura 1 mostra as soluções para os dois disparos realizados e para o disparo correto, o qual

gera a curva de deflexão para a viga.

Figura 1: Soluções conforme disparos realizados. Fonte: dos autores.

Com os resultados obtidos, pode-se verificar, que a menos de erros de arredondamento, a solução
numérica coincide com a solução analítica, dada por y(x) = (2wLx3 − wx4 − wL3x)/(24EI),
x ∈ [0, L].

Conclui-se que o método Shooting é uma ferramenta eficaz para resolver PVCs lineares de
segunda ordem, como demonstrado no desenvolvimento da solução para a deflexão de uma viga
uniformemente carregada. Por meio da aplicação do método de Runge-Kutta, foi possível alcançar
uma solução precisa. Além disso, a utilização da linguagem Python possibilitou a rápida resolução
dos PVIs a cada disparo, e também, a visualização dos resultados, destacando a importância de
métodos numéricos e computacionais na resolução de problemas de engenharia.

Referências
[1] W. E. Boyce, R. C. Diprima e D. B. Meade. Equações diferenciais elementares e pro-

blemas de valores de contorno. 11a. ed. LTC, 2012.

[2] R. L. Burden e J. D. Faires. Análise Numérica. 8a. ed. Cengage Learning, 2008.

[3] S. C. Chapra e R. P. Canale. Métodos Numéricos para Engenheiros. 3a. ed. McGraw-Hill,
2013.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

010027-2 © 2026 SBMAC


