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Recently, quasi-symmetric orthogonal polynomials and associated Gaussian quadrature rules
were studied in [3]. It is well known that orthogonal polynomials on the real line satisfy a three-
term recurrence relation (see [1]). In the quasi-symmetric case, the orthogonal polynomials satisfy
the following three-term recurrence relation
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ϕ
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2n = b, a, b ∈ R, and max{|a|, |b|} > 0. Here, γ ϕ
n+1 is

a positive real number given in terms of the associated orthogonality measure ϕ (see [3, Eq. (2)]).
Now, if η is the symmetric orthogonality measure for orthogonal polynomials obtained when

a = b = 0 in (1) and ϕ is the orthogonality measure corresponding to the case where a, b ∈ R, with
at least a (or b) different from zero, then the measures ϕ and η are related by (see [3, Theorem 4])
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dη(
√
pa,b(x) ),

with supp(ϕ) ⊂ Iba = (−∞,m ] ∪ [M,∞), m = min{a, b}, M = max{a, b}, and pa,b(x) = (x −
a)(x− b).

In [3], the complete characterization of quasi-symmetric orthogonal polynomials was given in
terms of the associated symmetric ones. In the same paper, connection formulas for the weights
and nodes in the corresponding Gaussian quadrature rules were also established. In fact, for n ≥ 1,
it was shown that the nodes in the associated Gaussian quadrature rule are connected by
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Moreover, the weights are related by
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Here, ck = −1 if k ∈ {1, 2, . . . , n} and ck = 1, otherwise.
Thus, ∫

Ib
a

f(x)dϕ(x) =

n∑
k=1
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n,kf(x

ϕ
n,k) + En(f), (2)

where En(f) is the error in the approximation (see [2]).
In this work, for b > 0, and considering a = −b, we show that when f is an even function

defined in Iba the weights in (2) can be simply replaced by wη
n,k. Moreover, we also show that the

error in the approximation is preserved. Thus,∫
Ib
a
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ϕ
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with Ên(f) = En(f), which means that we can use the weights associated with the symmetric case
in order to approximate the quasi-symmetric one. Notice that the nodes remain the same in (2)
and (3).

We believe that this result can be extended for any general function f defined in Iba through
the well-known decomposition
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Notice that f(x) = g(x) + xh(x), where g and h are even functions. Then, from the results
obtained in [3, Lemma 1], the odd part of f can be calculated in terms of the parameter b and the
even function h. Another subject of future interest is the analysis of the error when f is a general
function. Taking into account our initial results, it seems that the error will necessarily depend on
the parameter b as well as the behavior of the error in the purely symmetric case. Finally, we also
intend to obtain similar results for the case a ̸= −b.
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