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Este presente trabalho visa definir, analisar e implementar soluções numéricas para uma classe de
equações diferenciais parciais utilizando o método dos elementos finitos. A classe de equações diferen-
ciais a ser resolvida é uma generalização da equação Benjamin-Bona-Mahony [1]

ut + ux + uux − uxxt = 0 (1)

onde as variáveis subscritas representam uma derivação parcial da função em relação a esta variável. A
equação de interesse neste estudo será a equação

βut + (g(u))x − αuxxt = f (2)

onde g : R 7→ R, α, β ∈ R. Para recuperarmos a equação (1), tomamos g(s) = s2

2 + s, f ≡ 0, α = 1 e
β = 1. Neste trabalho a equação acima é analisada em apenas uma dimensão espacial e em um intervalo
de tempo, ambos finitos. Ou seja, consideremos u(x, t) : Ω̄ × [0, T ] 7→ R e f(x, t) : Ω̄ × [0, T ] 7→ R, em
que T ∈ R+ é o tempo final e Ω̄ = [0, X], X ∈ R+. Além disso, consideramos que é conhecida a solução
no tempo inicial, que denotamos por u0, e que a função u é prescrita e homogênea nos limites do intervalo.
Isto é, u(x, 0) = u0(x) e u(0, t) = u(X, t) = 0. Para obtermos a solução numérica para esta classe de
equações em (2), sujeitas as restrições acima, seguimos os seguintes passos:

1. Escrever a equação (2) na sua forma fraca variacional.

2. Aproximar a solução por uma de base de dimensão finita.

3. Definir esta solução de forma matricial.

4. Escolher as funções de interpolação da base e a estratégia de integração numérica.

5. Implementar a montagem e resolução dos sistemas lineares resultantes.

No primeiro passo, utilizou-se a estratégia de multiplicar a equação (2) por uma função v : R 7→
R e realizar uma integração parcial [2]. Em seguida, aplicou-se o Método de Crank-Nicolson Galerkin
linearizado para a realização da discretização do tempo e do espaço. As escolhas neste passo foram tomadas
visando a definição matricial do problema, que é construı́da através de manipulações da equação para sua
estruturação em matrizes e vetores. Para a escolha de funções da base, foram tomados polinômios contı́nuos
de grau 1 e suporte compacto, conhecidos como hat functions. Para a integração numérica, utiliza-se a
Quadratura Gaussiana. Por fim, a implementação e resolução dos sistemas é feita utilizando Julia - uma
linguagem recente, mas que tem se provado performática e munida de variadas ferramentas de suporte
ao desenvolvimento de códigos para computação cientı́fica. Para a verificação da corretude do código
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Figura 1: Solução numérica no tempo t = 0.0 e t = 10.0 para a equação (1), tomando

u0 = 3(ν − 1)sech2( 12

√
ν−1
ν (x− x0), com ν = 1.4, x0 = 20, T = 20 e Ω̄ = [0, 20π]. Fonte: autoria

própria.

desenvolvido, é feito um estudo de erro com uma equação que conhecemos a solução analı́tica. É possı́vel
observar uma convergência quadrática do erro para diversos testes, que é o resultado teórico esperado. A
tı́tulo de exemplo, tomando u(x, t) = sen(πxX )e−t na equação (2) e usando os parâmetros α = 1, β = 1,

X = 1, g(s) = s2

2 obtemos f(x, t) = sen(πxX )e−t
(

π
X cos(πxX )e−t − 1− π2

X2

)
. Fazendo o refinamento do

intervalo (isto é, realizando testes consecutivos para quantidades crescentes de subintervalos) e calculando
o erro pela norma L2 da solução numérica comparada a u(x, t), temos a Tabela 1.

Tabela 1: Estudo de Erro para u(x, t) = sen(πx
X
)e−t.

Nº Elementos h (X/Nº Elementos) Erro L2 Ordem do erro
4 2.50000e-1 3.92843e-2 —

16 6.25000e-2 2.48650e-3 1.99088
128 7.81250e-3 3.88838e-5 1.99960
512 1.95312e-3 2.43027e-6 1.99998
2048 4.88281e-4 1.51892e-7 2.00000

Por fim, foram feitas exibições das soluções numéricas para a equação BBM (1) e analisamos seu com-
portamento total. Nota-se que, tal qual o fenômeno fı́sico modelado pela equação, a solução numérica
reproduz o comportamento esperado. A onda gerada no tempo 0 propaga-se pelo intervalo conservando
sua velocidade e sua amplitude, como podemos ver na Figura 1. Na figura, exibimos dois instantes
de tempo, porém para a simulação completa consulte https://github.com/SamuelMota333/
mef-cnmac-2025/blob/main/Imagens/sol-num.gif
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Matemática/UFRJ, 2020. ISBN: 978-65-86502-00-8.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

010215-2 © 2026 SBMAC


