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Solu¢ao numérica de uma classe de Equagdes Diferenciais
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Este presente trabalho visa definir, analisar e implementar solugdes numéricas para uma classe de
equagdes diferenciais parciais utilizando o método dos elementos finitos. A classe de equacgdes diferen-
ciais a ser resolvida € uma generaliza¢do da equagdo Benjamin-Bona-Mahony [1]

Up + Uy + Uy — Uggr = 0 1)

onde as varidveis subscritas representam uma derivagdo parcial da fun¢do em relagdo a esta variavel. A
equagdo de interesse neste estudo serd a equacio

Bus + (g(u))r — OUger = f 2

onde g : R — R, o, 8 € R. Para recuperarmos a equacéo (1), tomamos g(s) = % +s, f=0,a=1e
B = 1. Neste trabalho a equac@o acima € analisada em apenas uma dimensao espacial e em um intervalo
de tempo, ambos finitos. Ou seja, consideremos u(z,t) :  x [0,T] — Re f(z,t) : Q@ x [0,T] — R, em
que T € R é o tempo final e Q = [0, X], X € R*. Além disso, consideramos que é conhecida a solugiio
no tempo inicial, que denotamos por ug, € que a fung¢do u € prescrita e homogénea nos limites do intervalo.
Isto é, u(x,0) = ugp(z) e u(0,t) = u(X,¢) = 0. Para obtermos a solu¢do numérica para esta classe de
equagdes em (2), sujeitas as restricdes acima, seguimos 0s seguintes passos:

1. Escrever a equagdo (2) na sua forma fraca variacional.

2. Aproximar a solug@o por uma de base de dimensdo finita.

3. Definir esta solug@o de forma matricial.

4. Escolher as fungdes de interpolacao da base e a estratégia de integracdo numérica.
5

. Implementar a montagem e resolucdo dos sistemas lineares resultantes.

No primeiro passo, utilizou-se a estratégia de multiplicar a equacdo (2) por uma funcdo v : R —
R e realizar uma integracdo parcial [2]. Em seguida, aplicou-se o Método de Crank-Nicolson Galerkin
linearizado para a realizacao da discretizacdo do tempo e do espaco. As escolhas neste passo foram tomadas
visando a defini¢do matricial do problema, que é construida através de manipula¢des da equacdo para sua
estruturacao em matrizes e vetores. Para a escolha de fungdes da base, foram tomados polindmios continuos
de grau 1 e suporte compacto, conhecidos como hat functions. Para a integracdo numérica, utiliza-se a
Quadratura Gaussiana. Por fim, a implementacdo e resolucdo dos sistemas € feita utilizando Julia - uma
linguagem recente, mas que tem se provado performdtica e munida de variadas ferramentas de suporte
ao desenvolvimento de cddigos para computagdo cientifica. Para a verificacdo da corretude do cédigo

Lcarlosevm @ic.uftj.br
2motasm2611@gmail.com
3bruno.carmo @ ppgi.ufij.br
4marcellogt@ic.ufrj.br

010215-1 © 2026 SBMAC



Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

t=0.0 t=10.0

u~h(x)
u~h(x)

Figura 1: Solug¢do numérica no tempo ¢t = 0.0 e ¢ = 10.0 para a equagao (1), tomando
up = 3(v — 1)sech?(34/“A(z — ), comv = 1.4, 79 = 20, T = 20 e Q = [0, 20]. Fonte: autoria
propria.

desenvolvido, € feito um estudo de erro com uma equagio que conhecemos a solug@o analitica. E possivel
observar uma convergéncia quadratica do erro para diversos testes, que € o resultado tedrico esperado. A

titulo de exemplo, tomando u(z,t) = sen(%5%)e~" na equagio (2) e usando os pardmetros o = 1, § = 1,

2 2
X =1, g(s) = % obtemos f(z,t) = sen(%)e‘t(%cos(%)e_t -1- %) Fazendo o refinamento do
intervalo (isto €, realizando testes consecutivos para quantidades crescentes de subintervalos) e calculando

o erro pela norma L? da solugio numérica comparada a u(z, t), temos a Tabela 1.

Tabela 1: Estudo de Erro para u(z, t) = sen(%%)e "

N° Elementos | h (X/N° Elementos) Erro L2 Ordem do erro
4 2.50000e-1 3.92843e-2 —
16 6.25000e-2 2.48650e-3 1.99088
128 7.81250e-3 3.88838e-5 1.99960
512 1.95312e-3 2.43027e-6 1.99998
2048 4.88281e-4 1.51892e-7 2.00000

Por fim, foram feitas exibi¢des das solu¢des numéricas para a equacdo BBM (1) e analisamos seu com-
portamento total. Nota-se que, tal qual o fendmeno fisico modelado pela equagdo, a solugdo numérica
reproduz o comportamento esperado. A onda gerada no tempo 0 propaga-se pelo intervalo conservando
sua velocidade e sua amplitude, como podemos ver na Figura 1. Na figura, exibimos dois instantes
de tempo, porém para a simulagdo completa consulte https://github.com/SamuelMota333/
mef-cnmac-2025/blob/main/Imagens/sol-num.gif
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