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Artificial neural networks (ANNs) [3] have been successfully applied to solve partial differential
equations, particularly since the emergence of physics-informed neural networks (PINNs) [7]. Ap-
plications to nonlinear conservation laws have also shown promising results, including PINNs for
high-speed flows [6], conservative PINNs [4], and weak PINNs [8]. In this work, we propose a novel
method, called ANN-Flux, to solve the Riemann problem for the nonlinear scalar conservation law

ut + (F (u))x = 0, x, t ∈ R× (0, tf ], (1)
u(x, 0) = uL, x ∈ R−, u(x, 0) = uR, x ∈ R+, (2)

with prescribed left and right states uL, uR ∈ R, and a flux function F : R → R. When the flux
function is nonconvex, the entropy solution of problem (1) may consist of a combination of shock
and rarefaction waves, depending on the initial states. The two canonical cases are:

u(x, t) =

{
uL, x < tσ,

uR, x > tσ,
(shock) u(x, t) =


uL, x < tF ′(uL),

G(x/t), tF ′(uL) < x < tF ′(uR),

uR, x > tF ′(uR),

(raref.) (3)

where G = [F ′]−1 and the shock speed satisfying the Rankine–Hugoniot condition is σ =
F (uL)−F (uR)

uL−uR
. The ANN-Flux (ANN-F) method is designed for intricate flux functions that

are computationally expensive to evaluate, differentiate, or invert. Given that neural networks
are universal approximators [3], ANN-F approximates the flux F using a multilayer perceptron
(MLP) ỹ = NF (u) trained to minimize the mean squared error (MSE) loss ε

(
ỹ(s), y(s)

)
on the

dataset {
(
u(s), y(s) = F (u(s))

)
}ns,F

s=1 , where ns,F denotes the number of training samples. For the
shock wave case, the solution is obtained by replacing F with NF in the left-hand expression
of (3). In the rarefaction case, however, a second set of MLPs, denoted by N (k)

G , is introduced
to approximate the inverse of the derivative of F , i.e., [N ′

F ]
−1 ≈ [F ′]−1. The derivative N ′

F

is efficiently computed via automatic differentiation [2]. Each network N (k)
G is trained using a

dataset of the form {(δỹ(s), u(s))}ns,G

s=1 , where δỹ(s) = N ′
F (u

(s)) and u(s) is sampled in subdo-
mains of [uL, uR] defined by changes in concavity. Specifically, the domain is partitioned as
{uL ≤ u(s) ≤ u1

m}, {u1
m ≤ u(s) ≤ u2

m}, . . . , {uk
m ≤ u(s) ≤ uR}, where {u1

m, u2
m, . . . , uk

m}
are the points of inflection, i.e., roots of the second derivative of F , found via Newton’s method.
These ensure that each subdomain admits a monotonic F ′, enabling the local invertibility required
for N (k)

G . The training of the k+1 networks is performed by minimizing the MSE loss ε(ũ(s), u(s)),
where ũ(s) = N (k)

G (δỹ(s)). The rarefaction wave is then reconstructed by replacing F ′ with N ′
F

and G with the corresponding N (k)
G in the right-hand expression of (3). By combining the ANN-

based shock and rarefaction approximations, the ANN-Flux method is capable of solving Riemann
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problems involving nonconvex flux functions. The Buckley–Leverett equation models two-phase
immiscible and incompressible fluid flow through porous media [5]. Its flux function is nonconvex,
exhibiting a single change in concavity within the admissible domain of the variable. To solve the
equation, it is necessary to determine whether the left and right states of the solution lie within
the same concavity region of the flux function. If both states fall within the same region, the
solution consists of either a shock or a rarefaction wave. However, if the states lie in different
concavity regions, a convex (or concave) envelope must be constructed to connect them. In the
Buckley–Leverett case, this construction corresponds to using the lower convex envelope when
uL < uR, or the upper concave envelope when uR < uL, effectively redefining the flux function
accordingly. As a preliminary result, we compared the ANN-F solution with a reference numerical
solution of the Buckley–Leverett equation. The numerical inverse function G was locally computed
using Newton’s method. The MLP architectures were selected based on numerical experiments,
from which we concluded that a 1–50 × 3–1 network for NF and a 1–50 × 4–1 network for NG

were suitable for approximating F and G, respectively, achieving an L2 error of 10−6. Training
was performed using hyperbolic tangent activation functions in the hidden layers and the identity
function in the output layer, with the mean squared error as the loss function.The ANN-F method
yielded accurate results for the Buckley–Leverett equation, with a relative L2 error of 10−4. Future
work will focus on extending the method to more intricate conservation laws, such as those arising
in traffic flow modeling [1].
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