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As integrais múltiplas são uma extensão do conceito de integral definida para funções de várias
variáveis. Em particular, a integral tripla amplia a integral dupla, permitindo a análise de funções
definidas em um domínio tridimensional. Esse tipo de integral é fundamental para o cálculo de
volumes, massas, centro de massa e momento de inércia de sólidos no espaço [1].

Em muitos casos, a resolução exata de integrais triplas é complexa ou até inviável devido à
natureza das funções ou da região de integração. Nesse contexto, a integração numérica se torna
uma ferramenta crucial para obter soluções aproximadas de maneira eficiente.

O objetivo deste estudo é analisar o desempenho de quatro métodos de integração numérica
na resolução de integral tripla, utilizada para calcular o volume de um sólido geométrico, baseado
nas dimensões reais da nacele de um aerogerador Enercon E-82 EP2 E4. A nacele é a estrutura
localizada no topo da torre do gerador eólico, responsável por abrigar os componentes essenciais.
Sua forma, modelada como uma elipsóide, facilita a análise da figura geométrica. O cálculo de
volume é essencial para entender as propriedades físicas do aerogerador, sua interação com o
ambiente e para a análise de desempenho e segurança do dispositivo.

De acordo com [2], a integração numérica tem por objetivo encontrar um polinômio no intervalo
[a, b] que se aproxime razoavelmente da função f(x). As fórmulas fechadas de Newton-Cotes mais
usadas para encontrar este polinômio são a Regra do Trapézio (RT), Regra 1/3 de Simpson (R1/3)
e a Regra 3/8 de Simpson (R3/8). Esses métodos são amplamente aplicados em problemas de
física e engenharia, permitindo o cálculo de integrais múltiplas com precisão.

A RT usa o polinômio de Lagrange para expressar o polinômio P (x) que iterpola f(x) no
intervalo [a, b]. A RT repetida consiste na divisão do intervalo [a, b] em n subintervalos iguais com

amplitude h =
xn − x0

n
e aplica a RT em cada subintervalo. Assim, temos que a RT repetida é∫ xn

x0

f(x) dx ≡ h

2
[f(x0) + 2(f(x1) + . . .+ f(xn−1)) + f(xn)] (1)

A R1/3 consiste em usar o polinômio de Lagrange para expressar o polinômio P (x) que iterpola
f(x), definida em três pontos distintos e equidistantes do intervalo [a, b]. Assim, a R1/3 repetida
consiste em dividir o intervalo [a, b] em números pares de subintervalos iguais n, com amplitude
h = xn − xn−1 e aplicar a R1/3 em cada dois intervalos consecutivos. Assim, a R1/3 repetida é∫ xn

x0

f(x) dx ≡ h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x4) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)] (2)

A R3/8 usa a mesma ideia da R1/3, porém o polinômio P (x) que iterpola f(x) está definida
em quatro pontos distintos e equidistantes do intervalo [a, b]. Assim, a R3/8 repetida é dada por
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2

∫ xn

x0

f(x) dx≡3

8
h [f(x0) + 3f(x1) + 3f(x2) + 2f(x3)+ . . .+2f(xn−3) + 3f(xn−2) + 3f(xn−1) + f(xn)] (3)

A Quadratura Gaussiana (QG) é considerado um método numérico de alta precisão para calcular
integrais, utilizando pontos e pesos específicos (nós e pesos de Gauss) para aproximar a integral de uma
função e os pontos não precisam ser equidistantes. Enquanto as fórmulas de Newton-Cotes são exatas para
polinômios de grau menor ou igual de n, a QG é exata para polinômios de grau menor ou igual a 2n− 1.
Na QG deixamos x0, x1, . . . , xn indeterminados e temos∫ xn

x0

f(x) dx ≡
(∫ xn

x0

L0(x) dx

)
f(x0) + . . .+

(∫ xn

x0

Ln(x) dx

)
f(xn) (4)

onde Lk, com k = 0, . . . , n, é o polinômio interpolador de Lagrange.

PROBLEMA: Determinar o volume da elipsóide
x2

6.25
+

y2

56.25
+

z2

6.25
= 1, usando os métodos numéricos

RT, R1/3, R3/8 e QG, para 30, 60, 120, 360 e 600 subintervalos.
Neste problema usamos as coordenadas elipsoidais dadas por x = 2.5 r senϕ cosθ, y = 7.5 r senϕ senθ,

z = 2.5 r cosϕ e
∂(xyz)

∂(rϕθ)
= 46.875 r2 senϕ. Usando a variável radial normalizada r, temos∫ ∫ ∫

V

dV =

∫ 2π

0

∫ π

0

∫ 1

0

46.875 r2 senϕ dr dϕ dθ (5)

Efetuamos a implementação dos métodos em Python versão 3.13.2, numa máquina com processador
Intel Core i5, 8 GB de RAM e sistema operacional Windows 10. Para analisar a precisão de cada mé-
todo usamos o Erro Relativo (ER). O valor analítico do volume é 196.3495408 m3 e a análise será pela
comparação entre os valores do volume de cada método com o valor analítico, conforme Tabela 1.

Tabela 1: Resultado dos experimentos realizados
Método n = 30 n = 60 n = 120 n = 360 n = 600

RT 196.1944444 196.2847222 196.1953125 196.3352785 196.3443192
ER 7.899 ×10−4 3.301 ×10−4 7.854 ×10−4 7.264 ×10−5 2.659 ×10−5

R1/3 197.6131687 196.8158436 196.2487139 196.3434451 196.3446194
ER 6.435 ×10−3 2.375 ×10−3 5.135 ×10−4 3.104 ×10−5 2.506 ×10−5

R3/8 196.3498373 196.3495598 196.3495425 196.3495417 196.3495419
ER 1.51 ×10−6 9.676 ×10−8 8.66 ×10−9 4.583 ×10−9 5.602 ×10−9

QG 198.6542064 196.8539016 196.5384605 196.3923966 196.3684712
ER 1.173 ×10−2 2.568 ×10−3 9.621 ×10−4 2.182 ×10−4 9.641 ×10−5

Analisando a tabela acima, podemos perceber que todos os métodos tiveram desempenho satisfatórios
levando em consideração o ER. Como esperado, a R3/8 se destacou pela eficiência para todos valores de
n em relação aos demais métodos. O QG, por sua vez, teve maior evolução à medida que o número de
intervalos aumentava, o que demonstra ser um método em que sua eficiência está diretamente ligada ao
valor de n. Cabe ressaltar que, n = 120 e n = 360 foram suficientes levando em consideração o ER, uma
vez que o tempo de execução dos métodos aumenta na ordem de n3, devido ao algoritmo iterar sobre
uma malha tridimensional. Como consequência, o custo computacional aumenta de forma exponencial.
Portanto, podemos concluir que todos os métodos se mostraram eficientes na resolução da integral tripla.
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