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As integrais multiplas sao uma extensao do conceito de integral definida para fungoes de varias
variaveis. Em particular, a integral tripla amplia a integral dupla, permitindo a analise de fungoes
definidas em um dominio tridimensional. Esse tipo de integral é fundamental para o calculo de
volumes, massas, centro de massa e momento de inércia de solidos no espaco [1].

Em muitos casos, a resolucao exata de integrais triplas é complexa ou até inviavel devido a
natureza das fungbes ou da regiao de integracao. Nesse contexto, a integracao numeérica se torna
uma ferramenta crucial para obter solugoes aproximadas de maneira eficiente.

O objetivo deste estudo é analisar o desempenho de quatro métodos de integragao numeérica
na resolucao de integral tripla, utilizada para calcular o volume de um sélido geométrico, baseado
nas dimensoes reais da nacele de um aerogerador Enercon E-82 EP2 E4. A nacele é a estrutura
localizada no topo da torre do gerador edlico, responsavel por abrigar os componentes essenciais.
Sua forma, modelada como uma elipsoide, facilita a anélise da figura geométrica. O célculo de
volume é essencial para entender as propriedades fisicas do aerogerador, sua interagao com o
ambiente e para a analise de desempenho e seguranga do dispositivo.

De acordo com [2], a integragdo numérica tem por objetivo encontrar um polindémio no intervalo
[a,b] que se aproxime razoavelmente da funcao f(x). As formulas fechadas de Newton-Cotes mais
usadas para encontrar este polindmio sao a Regra do Trapézio (RT), Regra 1/3 de Simpson (R1/3)
e a Regra 3/8 de Simpson (R3/8). Esses métodos sao amplamente aplicados em problemas de
fisica e engenharia, permitindo o célculo de integrais multiplas com precisao.

A RT usa o polindomio de Lagrange para expressar o polinomio P(z) que iterpola f(z) no
intervalo [a,b]. A RT repetida consiste na divisdo do intervalo [a, b] em n subintervalos iguais com
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amplitude h = om0 aplica a RT em cada subintervalo. Assim, temos que a RT repetida é
n

/l f(z) do = g [f(zo) +2(f(z1) + ...+ f(@n-1)) + fzn)] .

A R1/3 consiste em usar o polindmio de Lagrange para expressar o polinomio P(x) que iterpola
f(z), definida em trés pontos distintos e equidistantes do intervalo [a,b]. Assim, a R1/3 repetida
consiste em dividir o intervalo [a,b] em ndmeros pares de subintervalos iguais n, com amplitude
h =z, —x,-1 e aplicar a R1/3 em cada dois intervalos consecutivos. Assim, a R1/3 repetida é
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Zo
A R3/8 usa a mesma ideia da R1/3, porém o polindomio P(x) que iterpola f(x) esta definida
em quatro pontos distintos e equidistantes do intervalo [a,b]. Assim, a R3/8 repetida é dada por
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A Quadratura Gaussiana (QG) é considerado um método numeérico de alta precisdo para calcular
integrais, utilizando pontos e pesos especificos (nos e pesos de Gauss) para aproximar a integral de uma
funcao e os pontos nao precisam ser equidistantes. Enquanto as formulas de Newton-Cotes sao exatas para
polinémios de grau menor ou igual de n, a QG é exata para polindémios de grau menor ou igual a 2n — 1.
Na QG deixamos zo, z1, ..., T, indeterminados e temos
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,m, é o polindmio interpolador de Lagrange.
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PROBLEMA: Determinar o volume da elipsbide 623725 + ﬁ + & = 1, usando os métodos numéricos

RT, R1/3, R3/8 e QG, para 30, 60, 120, 360 e 600 ‘subintervalos.
Neste problema usamos as coordenadas elipsoidais dadas por z = 2.5 r sen¢ cosl, y = 7.5 r sen¢ senf,
d(zyz)

A(re0)

onde Lg, com k =0,...

= 46.875 r? send. Usando a variavel radial normalizada r, temos

///V dV:/O%/OW/Ol46.875 r? send dr d¢ df (5)

Efetuamos a implementacao dos métodos em Python versao 3.13.2, numa maquina com processador
Intel Core 15, 8 GB de RAM e sistema operacional Windows 10. Para analisar a precisdo de cada mé-
todo usamos o Erro Relativo (ER). O valor analitico do volume ¢ 196.3495408 m?> e a analise sera pela
comparagao entre os valores do volume de cada método com o valor analitico, conforme Tabela 1.

z =251 cosp e

Tabela 1: Resultado dos experimentos realizados

Método n—230 n — 60 n—120 n = 360 n = 600
RT 196.1944444 | 196.2847222 | 196.1953125 | 196.3352785 | 196.3443192
ER 7.899 x10~* | 3.301 x10~* | 7.854 x10~* | 7.264 x10~° | 2.659 x10~5
R1/3 | 197.6131687 | 196.8158436 | 196.2487139 | 196.3434451 | 196.3446194
ER 6.435 x1073 | 2.375 x1072 | 5.135 x10~* | 3.104 x10~5 | 2.506 x10~°
R3/8 | 196.3498373 | 196.3495598 | 196.3495425 | 196.3495417 | 196.3495419
ER 1.51 x107% | 9.676 x10~% | 8.66 x107° | 4.583 x10~? | 5.602 x10~?
QG 198.6542064 | 196.8539016 | 196.5384605 | 196.3923966 | 196.3684712
ER 1.173 x1072 | 2.568 x1072 | 9.621 x10~% | 2.182 x10~* | 9.641 x10~°

Analisando a tabela acima, podemos perceber que todos os métodos tiveram desempenho satisfatorios
levando em consideragdo o ER. Como esperado, a R3/8 se destacou pela eficiéncia para todos valores de
n em relagdo aos demais métodos. O QG, por sua vez, teve maior evolucdo & medida que o nimero de
intervalos aumentava, o que demonstra ser um método em que sua eficiéncia esta diretamente ligada ao
valor de n. Cabe ressaltar que, n = 120 e n = 360 foram suficientes levando em consideragdo o ER, uma
vez que o tempo de execucdo dos métodos aumenta na ordem de n®, devido ao algoritmo iterar sobre
uma malha tridimensional. Como consequéncia, o custo computacional aumenta de forma exponencial.
Portanto, podemos concluir que todos os métodos se mostraram eficientes na resolugéo da integral tripla.
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