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Markov chain Monte Carlo (MCMC) is routinely used to perform Bayesian inference for a
wide range of complex models (see [1]). However, in Bayesian models with intractable normalising
distributions — where the normalising constant lacks a closed-form expression — standard MCMC
methods face significant challenges, with no definitive solution. To illustrate this, consider a
posterior density of the usual form:

π(θ | y) = p(y | θ)× π(θ)

p(y)
(1)

=
f(y; θ)

Z(θ)
× π(θ)× 1

p(y)
,

where the marginal likelihood is given by p(y) =
∫
p(y | θ)π(θ)dθ and Z(θ) does not have a closed

form. This affects MCMC when we express the probability of accepting a proposed parameter
from a proposal distribution q(θ′ | θ):

α(θ′, θ) = min

{
1,

f(y; θ′)π(θ′)q(θ′ | θ)
f(y; θ)π(θ)q(θ | θ′)

× Z(θ)

Z(θ′)

}
. (2)

The last term, however, cannot be evaluated directly, then we are not able to use the classic
MCMC. These constants often appear in likelihood functions, such as in the Double Poisson
distribution a generalization of the Poisson distribution that introduces an extra dispersion pa-
rameter, allowing for overdispersion or underdispersion. Its probability mass function (p.m.f) is

p(y | µ, ϕ) = exp(−y)yy

y!

(
exp(1)µ

y

)ϕy

· 1

Z(µ, ϕ)
, (3)

where the normalising constant Z(µ, ϕ) depends on both parameters (µ and ϕ). Specifically:

Z(µ, ϕ) =

∞∑
y=0

exp(−y)yy

y!

(
exp(1)µ

y

)ϕy

. (4)

This dependence on both µ and ϕ makes inference computationally challenging. Similarly, the
Conway-Maxwell Poisson (COM-Poisson) distribution which the p.m.f is defined by

p(y | λ, ν) = λy

(y!)ν
· 1

Z(λ, ν)
, (5)

where Z(λ, ν) =
∑∞

y=0
λy

(y!)ν , note that for ν = 1, the distribution reduces to a standard Poisson
distribution. Or even the Zipf distribution which is a discrete power-law distribution where the
probability mass function (p.m.f.) is given by
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p(k | s,N) =
k−s

Z(s,N)
, k = 1, 2, . . . , N (6)

where, Z(s,N) =
∑N

k=1 k
−s is the normalising constant (e.g., the Riemann zeta function when

N → ∞).
We investigate methods for evaluating the p.m.f of the above distributions in the context of

MCMC methods. We discuss in [2] how to use the ratio test to approximate normalization constants
with the desired error.

This method can be seen in Table 1, named Bounding pairs3, where a simple example is given
with different ways of evaluating the normalisation constant with guaranteed low error. In Table 1,
we compare our method with the Threshold, which evaluates until the nth term is less than a
defined error (but which is not guaranteed, although it is widely used). And Fixed, evaluating a
fixed number of terms.

Table 1: Bayesian analysis of inventory data [3] under Conway-Maxwell Poisson model
using noisy algorithms. We show the posterior mean and Bayesian credible interval (BCI) for µ
and ν and the median number of iterations n needed to get an approximation within ε = 2.2×10−16

of the true normalizing constant. Results for the noisy algorithm with fixed K. We provide
estimates of the Monte Carlo standard error (MCSE), effective sample size (ESS) and effective
sample size per minute (ESS / minute).

Posterior median (BCI) Posterior sd MCSE ESS ESS/minute

Threshold
µ 0.805 (0.533, 1.084) 0.140 0.002 3269 115443
ν 0.127 (0.104, 0.150) 0.012 0.000 3258 114830
n 80 (75, 86) 2.862 0.048 3618 127517

Bounding pairs
µ 0.799 (0.533, 1.063) 0.137 0.003 2902 58481
ν 0.126 (0.105, 0.148) 0.011 0.000 2925 58944
n 81 (76, 88) 2.944 0.051 3318 66868

Fixed K = 100 µ 0.801 (0.535, 1.069) 0.136 0.002 3794 140271
ν 0.127 (0.105, 0.149) 0.011 0.000 3804 140622

Fixed K = 3300 µ 0.800 (0.532, 1.074) 0.138 0.002 2992 4113
ν 0.126 (0.104, 0.150) 0.011 0.000 2969 4082
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3µ is such that µ = λν , for this case.
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