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Many problems in science and engineering can be understood as a risk minimization procedure
over a suitable linear space, such as regression tasks in statistics, or finding solutions to partial
differential equations and inverse problems. See [1] for other examples. The natural spaces where
the solutions to these problems live are often infinite dimensional, which leads to tractability
problems. In response, many solution approaches involve, in one way or another, a reformulation
within a parametric, finite-dimensional setting. In boundary value problems for PDEs, for example,
finite element methods use a weak formulation of the PDE over a suitable discretization of the
domain to arrive at a finite-dimensional linear system. Even more modern ideas, such as the
Physics Informed Neural Networks (PINNs) put forward in [2], involve representing the solution
to the PDE through parametric function in the form of a neural network, although the number of
parameters can be quite high.

In this work, we wish to directly tackle the problem of risk minimization in an infinite dimen-
sional space, and our strategy will be to perform (stochastic) gradient descent within this
space. The main difficulty comes from the fact that, in our problems of interest, it is not possible
to compute the (stochastic) gradient exactly, so we must employ approximation strategies.

Let (H, ⟨·, ·⟩) be a Hilbert space. The problem we want to solve is

min
h∈H

R(h), (1)

where R is a risk functional R : H → R which we assume to be Fréchet differentiable with its
derivative being denoted by5 DR : H → H∗. Note that, for h ∈ H, DR(h) : H → R is a continuous
linear functional on H and, by the Riesz Representation Theorem, admits a representation as the
inner product with a member of H, which we call the gradient of R at h and denote by ∇R(h).

Our intent is to tackle problem (1) through gradient descent, however, as mentioned before, we
are not able to exactly compute (stochastic) gradients. The object which we can compute is the
directional derivative of R at h ∈ H in any direction v ∈ H, which we denote by6 DR(h)(v).
Fortunately, this is enough to obtain useful gradient estimators:

Quadratic approximation In this method, we exploit the following fact7:

∇R(h) = argmin
φ∈H

−⟨∇R(h), φ⟩+ 1

2
∥φ∥2 (2)
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5We denote the dual space of a Banach space X by X∗.
6Contrast this notation with the calligraphic D used for the Fréchet derivative.
7This characterization of the gradient is the one used by Mirror Descent methods when applied in Hilbert spaces

with a Bregman divergence given by the standard metric in H.
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Notice that the expression on the RHS only depends on ∇R(h) through its inner product with φ,
which is precisely the directional derivative at h in the direction φ. Hence, we can rewrite it as

argmin
φ∈H

−⟨∇R(h), φ⟩+ 1

2
∥φ∥2 = argmin

φ∈H
−DR(h)(φ) +

1

2
∥φ∥2 (3)

Since we are not able to conduct this minimization exactly over H, we obtain an estimator for
∇R(h) by minimizing over a subclass F ⊂ H. Our gradient estimator ∇̂R(h)QA is then given by

∇̂R(h)QA = argmin
φ∈F⊂H

−DR(h)(φ) +
1

2
∥φ∥2 (4)

For example, if H is a space of differentiable functions we may take F to be the set of neural
networks with a given architecture.

Inner product matching In this method, obtain an approximation of ∇R(h) by trying to match
its average inner product with randomly selected elements of H. Mathematically, let µh be a
probability measure defined on8 (H,B(H)). For example, one may think of µh as being a Gaussian
measure. If the covariance operator of µh is injective, then

∇R(h) = argmin
φ∈H

Eψ∼µh

[
(⟨∇R(h), ψ⟩ − ⟨φ,ψ⟩)2

]
. (5)

Since this expectation is hard to compute exactly we employ a Monte Carlo estimate. Given
samples i.i.d. ψ1, . . . , ψN

iid∼ µh, the estimator ∇̂R(h)IPM is given by

∇̂R(h)IPM = argmin
φ∈F⊂H

1

N

N∑
i=1

(
DR(h)(ψi)− ⟨φ,ψ⟩

)2
.

Letting ∇̂R(h) denote any of these estimators, we can then compute approximate solutions to (1)
through

hm+1 = hm − αm ̂∇R(hm), (6)

where (αm) is a sequence of learning rates. In our work, we apply this methodology to boundary
value problems in PDEs.
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8We denote the Borel σ-algebra in a topological space X by B(X).
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